Search results

1 – 10 of 520
Article
Publication date: 5 August 2021

Weipeng Duan, Jitai Han, Qingfneg Xia, Keqing Wang, Meiping Wu and Dalei Song

With the increasing demand for lightweight parts, the quality of the inner structure gained growing attention from different kinds of fields. As the quality of the overhanging

Abstract

Purpose

With the increasing demand for lightweight parts, the quality of the inner structure gained growing attention from different kinds of fields. As the quality of the overhanging surface was one of the most important factors affecting inner structure formation, its quality still needs to improve. This paper aims to clarify the change of the overhanging surface quality caused by different bending angles.

Design/methodology/approach

The structure of the inner hole was redesigned according to the different performances of the overhanging and side inner surface. The experimental results revealed why different surface qualities can be seen under different bending angles. According to the experimental data, the inner structure was redesigned to increase its overall performance.

Findings

The results revealed that when the bending angle was small, the slope of the overhanging surface increased which lead to the decreasing length of the powder-supported layer. However, less space on bending angle resulted in the accumulation of unmelted powder which leads to the increasing of sinking distance. When the bending angle was too large, the slope of the overhanging surface decreased and the length of the molten pool which was supported by powder increased. It resulted in the sinking of the molten pool caused by the gravity of powder and its attachment.

Originality/value

This paper is the first work to study the relationship between bending angle and overhanging surface quality as far as the authors know. The different performances of left and right overhanging surfaces also have not been revealed in other research studies to the best of the knowledge.

Details

Rapid Prototyping Journal, vol. 27 no. 8
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 20 March 2017

Michael Cloots, Livia Zumofen, Adriaan Bernardus Spierings, Andreas Kirchheim and Konrad Wegener

For geometries exhibiting overhanging surfaces, support structures are needed to dissipate process heat and to minimize geometrical distortions attributed to internal stresses…

1047

Abstract

Purpose

For geometries exhibiting overhanging surfaces, support structures are needed to dissipate process heat and to minimize geometrical distortions attributed to internal stresses. The use of support structures is often time- and cost-consuming. For this reason, this study aims to propose an approach which minimizes the use of such structures.

Design/methodology/approach

For minimizing the use of support structures, process parameters in combination with a contour-like exposure strategy are developed to realize support-less overhanging structures of less than 35°. These parameters are implemented in a shell-core strategy, which follows the idea of applying different processing strategies to the critical (overhanging) shell and the uncritical core of the part. Thereby, the core is processed with standard parameters, aiming a dense material. On the critical shell, optimized processing parameters are applied, reaching good results in terms of surface quality, especially at extreme overhang situations.

Findings

The results show that the selective laser melting (SLM) technology is able to realize support-less overhanging surfaces by choosing suitable scan strategies and process parameters. Particularly good results are always obtained when the exposure direction of the shell is parallel to the contour of the sample.

Originality/value

The validity of the results is demonstrated through the successful reproduction of the build strategy on two commercial SLM machines, reaching support-free builds of surfaces with an angle to the horizontal of less than or equal to 30°.

Details

Rapid Prototyping Journal, vol. 23 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 4 October 2018

Jing Xu, Xizhi Gu, Donghong Ding, Zengxi Pan and Ken Chen

The purpose of this paper is to systematically review the published slicing methods for additive manufacturing (AM), especially the multi-direction and non-layerwise slicing…

1209

Abstract

Purpose

The purpose of this paper is to systematically review the published slicing methods for additive manufacturing (AM), especially the multi-direction and non-layerwise slicing methods, which are particularly suitable for the directed energy deposition (DED) process to improve the surface quality and eliminate the usage of support structures.

Design/methodology/approach

In this paper, the published slicing methods are clarified into three categories: the traditional slicing methods (e.g. the basic and adaptive slicing methods) performed in the powder bed fusion (PBF) system, the multi-direction slicing methods and non-layerwise slicing methods used in DED systems. The traditional slicing methods are reviewed only briefly because a review article already exists for them, and the latter two slicing methods are reviewed comprehensively with further discussion and outlook.

Findings

A few traditional slicing approaches were developed in the literature, including basic and adaptive slicing methods. These methods are efficient and robust when they are performed in the PBF system. However, they are retarded in the DED process because costly support structures are required to sustain overhanging parts and their surface quality and contour accuracy are not satisfactory. This limitation has led to the development of various multi-direction and non-layerwise slicing methods to improve the surface quality and enable the production of overhangs with minimum supports.

Originality/value

An original review of the AM slicing methods is provided in this paper. For the traditional slicing methods and the multi-direction and non-layerwise slicing method, the published slicing strategies are discussed and compared. Recommendations for future slicing work are also provided.

Details

Rapid Prototyping Journal, vol. 24 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 8 September 2021

Fusheng Dai, Shuaifeng Zhang, Runsheng Li and Haiou Zhang

This paper aims to present a series of approaches for three-related issues in multiaxis in wire and arc additive manufacturing (WAAM) as follows: how to achieve a stable and…

Abstract

Purpose

This paper aims to present a series of approaches for three-related issues in multiaxis in wire and arc additive manufacturing (WAAM) as follows: how to achieve a stable and robust deposition process and maintain uniform growth of the part; how to maintain consistent formation of a melt pool on the surface of the workpiece; and how to fabricate an overhanging structure without supports.

Design/methodology/approach

The principal component analysis-based path planning approach is proposed to compute the best scanning directions of slicing contours for the generation of filling paths, including zigzag paths and parallel skeleton paths. These printing paths have been experimented with in WAAM. To maintain consistent formation of a melt pool at overhanging regions, the authors introduce definitions for the overhanging point, overhanging distance and overhanging vector, with which the authors can compute and optimize the multiaxis motion. A novel fabricating strategy of depositing the overhanging segments as a support for the deposition of filling paths is presented.

Findings

The second principal component of a planar contour is a reasonable scanning direction to generate zigzag filling paths and parallel skeleton filling paths. The overhanging regions of a printing layer can be supported by pre-deposition of overhanging segments. Large overhangs can be successfully fabricated by the multiaxis WAAM process without supporting structures.

Originality/value

An intelligent approach of generating zigzag printing paths and parallel skeleton printing paths. Optimizations of depositing zigzag paths and parallel skeleton paths. Applications of overhanging point overhanging distance and overhanging vector for multiaxis motion planning. A novel fabricating strategy of depositing the overhanging segments as a support for the deposition of filling paths.

Details

Rapid Prototyping Journal, vol. 28 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 28 September 2012

Yongqiang Yang, Jian‐bin Lu, Zhi‐Yi Luo and Di Wang

The purpose of this paper is to investigate the research approach to optimize shape accuracy, dimensional accuracy and density of customized orthodontic production fabricated by…

1898

Abstract

Purpose

The purpose of this paper is to investigate the research approach to optimize shape accuracy, dimensional accuracy and density of customized orthodontic production fabricated by selective laser melting (SLM).

Design/methodology/approach

A series of process experiments were applied to fabricating customized brackets directly by SLM, using 316L stainless steel. Shape accuracy can be optimized through the study on fabricating characteristics of non‐support overhanging structure. A scanning strategy combining contour scanning with orthogonal scanning, which differ in scanning speed and spot compensations, was proposed to improve dimensional accuracy. Scanning laser surface re‐melting was added to enhance the SLM density.

Findings

Optimized SLM parameters lead to high shape precision of customized brackets, and the average size error of bracket slot is less than 10 μm. The customized brackets density is more than 99 per cent, and the surface quality and mechanical properties meet the requirements.

Originality/value

The paper presents the state of the art in SLM of customized production (especially medical appliances) by optimizing part properties. It is the first time that SLM is employed in the manufacturing of customized orthodontic products. It shows the original research on overhanging structure and compound scanning strategy, approach to optimize SLM part accuracy. An improved laser surface re‐melting is employed in the density optimization.

Details

Rapid Prototyping Journal, vol. 18 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 18 January 2016

Di Wang, Changhui Song, Yongqiang Yang, Ruicheng Liu, Ziheng Ye, Dongming Xiao and Yang Liu

This paper aims to verify that additive manufacturing technology could be used for the redesign and rapid manufacturing of tools and determine whether the mechanical performance…

Abstract

Purpose

This paper aims to verify that additive manufacturing technology could be used for the redesign and rapid manufacturing of tools and determine whether the mechanical performance of such tools can satisfy the practical operating requirements.

Design/methodology/approach

A special key was selected as the research object in this paper. The special key was innovatively redesigned and manufactured directly using selective laser melting (SLM). The function and critical geometries of the special key were first analysed, which was followed by discussions on the geometrical constraints in the manufacturing of typical geometrical features using SLM technology. Next, the special key was redesigned based on the SLM geometrical constraints and the functional requirements. Finally, the key was manufactured using SLM, and the mechanical performance characteristics of the key were determined.

Findings

The minimal geometrical feature was 0.2 mm when manufacturing thin walls using SLM. The reliable building angle of an overhanging surface was 40°. The top surface quality of the part could be greatly improved through laser surface re-melting. The volume of the redesigned special key based on the SLM process was only one-third to one-fourth of the original key. The mechanical properties, such as tensile strength and micro-hardness, of the samples manufactured using SLM were able to reach the practical operating requirements.

Originality/value

It is completely feasible to redesign and manufacture precision tools based on the innovative approach of SLM. The advantages of the redesigned tools includes the lack of design restrictions that hinder traditional manufacturing methods, material savings, ability to produce tools that cannot be easily copied and rapid production speed for a small number of tools.

Details

Rapid Prototyping Journal, vol. 22 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 28 January 2020

Nicholas R. Fry, Robert C. Richardson and Jordan H. Boyle

This paper aims to present a multi-axis additive robot manufacturing system (ARMS) and demonstrate its beneficial capabilities.

Abstract

Purpose

This paper aims to present a multi-axis additive robot manufacturing system (ARMS) and demonstrate its beneficial capabilities.

Design/methodology/approach

ARMS was constructed around two robot arms and a fused filament fabrication (FFF) extruder. Quantitative experiments are conducted to investigate the effect of printing at different orientations with respect to gravity, the effect of dynamically changing build orientation with respect to the build tray when printing overhanging features, the effect of printing curved parts using curved, conformal layers. These capabilities are combined to print an integrated demonstrator showing potential practical benefits of the system.

Findings

Orientation with respect to gravity has no effect on print quality; dynamically changing build orientation allows overhangs up to 90° to be cleanly printed without support structures; printing an arch with conformal layers significantly increases its strength compared to conventional printing.

Research limitations/implications

The challenge of automatic slicing algorithms has not been addressed for multi-axis printing. It is shown that ARMS could eventually enable printing of fully-functional prototypes with embedded components.

Originality/value

This work is the first to prove that the surface roughness of an FFF part is independent of print orientation with respect to gravity. The use of two arms creates a novel system with more degrees of freedom than existing multi-axis printers, enabling studies on printing orientation relationships and printing around inserts. It also adds to the emerging body of multi-axis literature by verifying that curved layers improve the strength of an arch which is steeply curved and printed with the nozzle remaining normal to the curvature.

Details

Rapid Prototyping Journal, vol. 26 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 9 April 2018

Hongyao Shen, Huaidong Diao, Shuhua Yue and Jianzhong Fu

The staircase effect and support structure under overhanging geometry are two inherent weaknesses that reduces the surface quality and induces material waste. This paper aims to…

Abstract

Purpose

The staircase effect and support structure under overhanging geometry are two inherent weaknesses that reduces the surface quality and induces material waste. This paper aims to design a five-axis fused deposition modeling system with interference-free nozzle to solve the problems.

Design/methodology/approach

To facilitate the application of five-axis printing machine, three new printing methods are proposed according to different geometries and application requirements, which include tangential direction printing, normal sculpture printing and compatible printing.

Findings

The static flow beading characteristic is researched to establish the criterion for switching the mode between three-axis printing and five-axis printing. Experiment proves the critical point existing and 51° is the critical point at the given parameters. The concept of dynamic flow beading is proposed. The relationship between equivalent volume and roughness is established based on elaborate experiments, which helps to figure out the boundary between safe area and beading area under different parameters of layer thickness and nozzle diameter.

Originality/value

Three new printing methods are proposed according to different geometries and application requirements, which include tangential direction printing, normal sculpture printing and compatible printing. Considering the special movement situation during five-axis printing process, the dynamic flow beading issue is proposed. The relationship between equivalent volume and roughness is established based on elaborate experiments, which helps to figure out the boundary between safe area and beading area under different parameters of layer thickness and nozzle diameter.

Details

Rapid Prototyping Journal, vol. 24 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 22 August 2017

Jianfeng Sun, Zhou Yang, Yongqiang Yang and Di Wang

This paper aims to analyze the different between matrix and overhanging structure and indicate the laws and mechanism of overhanging structure formed by selective laser melting…

Abstract

Purpose

This paper aims to analyze the different between matrix and overhanging structure and indicate the laws and mechanism of overhanging structure formed by selective laser melting (SLM).

Design/methodology/approach

This paper includes processing the matrix and overhanging structure with optimized parameters and analyzing the microstructure and properties of matrix and overhanging with OM, SEM, XRD etc. so as to analyze and reveal the laws and mechanism of overhanging structure formed by SLM.

Findings

The solidification of overhanging structure begins from the structure’s edge and extends to its center; the distribution of the Cr with a diameter of 250 nm in the Fe matrix is uniform; the grain in the overhanging structure is growing faster than the grain in the matrix. The overhanging structure mainly composed by austenite has no apparent layer. Moreover, the microhardness of the overhanging structure is 258.6-294.0 Hv0.3, smaller than the microhardness of the matrix which is 236.4-300.9 Hv0.3.

Originality/value

This paper clarifies how to manufacture overhanging structure and non-overhanging structure matrix with optimized parameters, analyzes the microstructures and compares the properties of both overhanging structure and non-overhanging structure “matrix”, so as to analyze the reasons for the forming of the overhanging structure, which in turn lauds basic data foundation for the theoretical studies in the future.

Details

Rapid Prototyping Journal, vol. 23 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 2 September 2019

Yifeng Li, Xunpeng Qin, Qiang Wu, Zeqi Hu and Tan Shao

Robotic wire and arc additive manufacturing (RWAAM) is becoming more and more popular for its capability of fabricating metallic parts with complicated structure. To unlock the…

373

Abstract

Purpose

Robotic wire and arc additive manufacturing (RWAAM) is becoming more and more popular for its capability of fabricating metallic parts with complicated structure. To unlock the potential of 6-DOF industrial robots and improve the power of additive manufacturing, this paper aims to present a method to fabricate curved overhanging thin-walled parts free from turn table and support structures.

Design/methodology/approach

Five groups of straight inclined thin-walled parts with different angles were fabricated with the torch aligned with the inclination angle using RWAAM, and the angle precision was verified by recording the growth of each layer in both horizontal and vertical directions; furthermore, the experimental phenomena was explained with the force model of the molten pool and the forming characteristics was investigated. Based on the results above, an algorithm for fabricating curved overhanging thin-walled part was presented and validated.

Findings

The force model and forming characteristics during the RWAAM process were investigated. Based on the result, the influence of the torch orientation on the weld pool flow was used to control the pool flow, then a practical algorithm for fabricating curved overhanging thin-walled part was proposed and validated.

Originality/value

Regarding the fabrication of curved overhanging thin-walled parts, given the influences of the torch angles on the deposited morphology, porosity formation rate and weld pool flow, the flexibility of 6-DOF industrial robot was fully used to realize instant adjustment of the torch angle. In this paper, the deposition point and torch orientation of each layer of a robotic fabrication path was determined by the contour equation of the curve surface. By adjusting the torch angle, the pool flow was controlled and better forming quality was acquired.

Details

Industrial Robot: the international journal of robotics research and application, vol. 47 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

1 – 10 of 520