Search results

1 – 10 of 521
Article
Publication date: 22 April 2024

Arash Arianpoor and Ahmad Abdollahi

The purpose of this study is to propose a framework for the convergence of maturity model and education and evaluation in accounting.

Abstract

Purpose

The purpose of this study is to propose a framework for the convergence of maturity model and education and evaluation in accounting.

Design/methodology/approach

The present research was conducted in two phases. In the first phase, to determine the indicators of convergence of the maturity model and education and evaluation in accounting, a Meta-Synthesis method was used. The conceptual model includes two dimensions of “Teaching and learning processes” and “Evaluation methods"; five levels of initial, repeatable, defined, managed and optimized; and a total number of 35 indicators. In the second phase, a questionnaire was developed, and academics as accounting faculty members in Iranian public universities were employed to fill out the questionnaire electronically and present a final framework. Having received the questionnaires, 66 questionnaires were analyzed statistically.

Findings

The results showed that the two dimensions of “Teaching and learning processes” and “Evaluation methods” considering initial, repeatable, defined, managed and optimized levels include 35 indicators, which form a framework for the convergence of maturity model and education and evaluation in accounting. The results show that both dimensions have positive and significant regression path coefficients in the convergence model. Moreover, the dimension of teaching and learning processes has the highest regression path coefficient indicating a greater impact on the convergence model. Besides, all five levels have positive and significant regression path coefficients with dimensions. Finally, in this study, all indicators were prioritized according to five levels.

Originality/value

Due to the success of maturity models and the urgent developments that require transformative improvements in accounting education, maturity models can respond to the challenges associated with education and learning in accounting. Thus, conceiving an image of the convergence of maturity model, education and evaluation in accounting seems imperative which has been scarcely investigated previously.

Details

Accounting Research Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1030-9616

Keywords

Article
Publication date: 24 March 2022

Elavaar Kuzhali S. and Pushpa M.K.

COVID-19 has occurred in more than 150 countries and causes a huge impact on the health of many people. The main purpose of this work is, COVID-19 has occurred in more than 150…

Abstract

Purpose

COVID-19 has occurred in more than 150 countries and causes a huge impact on the health of many people. The main purpose of this work is, COVID-19 has occurred in more than 150 countries and causes a huge impact on the health of many people. The COVID-19 diagnosis is required to detect at the beginning stage and special attention should be given to them. The fastest way to detect the COVID-19 infected patients is detecting through radiology and radiography images. The few early studies describe the particular abnormalities of the infected patients in the chest radiograms. Even though some of the challenges occur in concluding the viral infection traces in X-ray images, the convolutional neural network (CNN) can determine the patterns of data between the normal and infected X-rays that increase the detection rate. Therefore, the researchers are focusing on developing a deep learning-based detection model.

Design/methodology/approach

The main intention of this proposal is to develop the enhanced lung segmentation and classification of diagnosing the COVID-19. The main processes of the proposed model are image pre-processing, lung segmentation and deep classification. Initially, the image enhancement is performed by contrast enhancement and filtering approaches. Once the image is pre-processed, the optimal lung segmentation is done by the adaptive fuzzy-based region growing (AFRG) technique, in which the constant function for fusion is optimized by the modified deer hunting optimization algorithm (M-DHOA). Further, a well-performing deep learning algorithm termed adaptive CNN (A-CNN) is adopted for performing the classification, in which the hidden neurons are tuned by the proposed DHOA to enhance the detection accuracy. The simulation results illustrate that the proposed model has more possibilities to increase the COVID-19 testing methods on the publicly available data sets.

Findings

From the experimental analysis, the accuracy of the proposed M-DHOA–CNN was 5.84%, 5.23%, 6.25% and 8.33% superior to recurrent neural network, neural networks, support vector machine and K-nearest neighbor, respectively. Thus, the segmentation and classification performance of the developed COVID-19 diagnosis by AFRG and A-CNN has outperformed the existing techniques.

Originality/value

This paper adopts the latest optimization algorithm called M-DHOA to improve the performance of lung segmentation and classification in COVID-19 diagnosis using adaptive K-means with region growing fusion and A-CNN. To the best of the authors’ knowledge, this is the first work that uses M-DHOA for improved segmentation and classification steps for increasing the convergence rate of diagnosis.

Details

Journal of Engineering, Design and Technology , vol. 22 no. 3
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 5 April 2024

Yiwei Zhang, Daochun Li, Zi Kan, Zhuoer Yao and Jinwu Xiang

This paper aims to propose a novel control scheme and offer a control parameter optimizer to achieve better automatic carrier landing. Carrier landing is a challenging work…

Abstract

Purpose

This paper aims to propose a novel control scheme and offer a control parameter optimizer to achieve better automatic carrier landing. Carrier landing is a challenging work because of the severe sea conditions, high demand for accuracy and non-linearity and maneuvering coupling of the aircraft. Consequently, the automatic carrier landing system raises the need for a control scheme that combines high robustness, rapidity and accuracy. In addition, to exploit the capability of the proposed control scheme and alleviate the difficulty of manual parameter tuning, a control parameter optimizer is constructed.

Design/methodology/approach

A novel reference model is constructed by considering the desired state and the actual state as constrained generalized relative motion, which works as a virtual terminal spring-damper system. An improved particle swarm optimization algorithm with dynamic boundary adjustment and Pareto set analysis is introduced to optimize the control parameters.

Findings

The control parameter optimizer makes it efficient and effective to obtain well-tuned control parameters. Furthermore, the proposed control scheme with the optimized parameters can achieve safe carrier landings under various severe sea conditions.

Originality/value

The proposed control scheme shows stronger robustness, accuracy and rapidity than sliding-mode control and Proportion-integration-differentiation (PID). Also, the small number and efficiency of control parameters make this paper realize the first simultaneous optimization of all control parameters in the field of flight control.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 25 April 2024

Xu Yang, Xin Yue, Zhenhua Cai and Shengshi Zhong

This paper aims to present a set of processes for obtaining the global spraying trajectory of a cold spraying robot on a complex surface.

Abstract

Purpose

This paper aims to present a set of processes for obtaining the global spraying trajectory of a cold spraying robot on a complex surface.

Design/methodology/approach

The complex workpiece surfaces in the project are first divided by triangular meshing. Then, the geodesic curve method is applied for local path planning. Finally, the subsurface trajectory combination optimization problem is modeled as a GTSP problem and solved by the ant colony algorithm, where the evaluation scores and the uniform design method are used to determine the optimal parameter combination of the algorithm. A global optimized spraying trajectory is thus obtained.

Findings

The simulation results show that the proposed processes can achieve the shortest global spraying trajectory. Moreover, the cold spraying experiment on the IRB4600 six-joint robot verifies that the spraying trajectory obtained by the processes can ensure a uniform coating thickness.

Originality/value

The proposed processes address the issue of different parameter combinations, leading to different results when using the ant colony algorithm. The two methods for obtaining the optimal parameter combinations can solve this problem quickly and effectively, and guarantee that the processes obtain the optimal global spraying trajectory.

Details

Robotic Intelligence and Automation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 21 March 2024

Zhaobin Meng, Yueheng Lu and Hongyue Duan

The purpose of this paper is to study the following two issues regarding blockchain crowdsourcing. First, to design smart contracts with lower consumption to meet the needs of…

Abstract

Purpose

The purpose of this paper is to study the following two issues regarding blockchain crowdsourcing. First, to design smart contracts with lower consumption to meet the needs of blockchain crowdsourcing services and also need to design better interaction modes to further reduce the cost of blockchain crowdsourcing services. Second, to design an effective privacy protection mechanism to protect user privacy while still providing high-quality crowdsourcing services for location-sensitive multiskilled mobile space crowdsourcing scenarios and blockchain exposure issues.

Design/methodology/approach

This paper proposes a blockchain-based privacy-preserving crowdsourcing model for multiskill mobile spaces. The model in this paper uses the zero-knowledge proof method to make the requester believe that the user is within a certain location without the user providing specific location information, thereby protecting the user’s location information and other privacy. In addition, through off-chain calculation and on-chain verification methods, gas consumption is also optimized.

Findings

This study deployed the model on Ethereum for testing. This study found that the privacy protection is feasible and the gas optimization is obvious.

Originality/value

This study designed a mobile space crowdsourcing based on a zero-knowledge proof privacy protection mechanism and optimized gas consumption.

Details

International Journal of Web Information Systems, vol. 20 no. 3
Type: Research Article
ISSN: 1744-0084

Keywords

Article
Publication date: 30 April 2024

Benjamin F. Morrow, Lauren Berrings Davis, Steven Jiang and Nikki McCormick

This study aims to understand client food preferences and how pantry offerings can be optimized by those preferences.

Abstract

Purpose

This study aims to understand client food preferences and how pantry offerings can be optimized by those preferences.

Design/methodology/approach

This study develops and administers customized surveys to study three food pantries within the Second Harvest Food Bank of Northwestern North Carolina network. This study then categorizes food items by client preferences, identifies the key predictors of those preferences and obtains preference scores by fitting the data to a predictive model. The preference scores are subsequently used in an optimization model that suggests an ideal mix of food items to stock based upon client preferences and the item and weight limits imposed by the pantry.

Findings

This study found that food pantry clients prefer fresh and frozen foods over shelf-friendly options and that gender, age and religion were the primary predictors. The optimization model incorporates these preferences, yielding an optimal stocking strategy for the pantry.

Research limitations/implications

This research is based on a specific food bank network, and therefore, the client preferences may not be generalizable to other food banks. However, the framework and corresponding optimization model is generalizable to other food aid supply chains.

Practical implications

This study provides insights for food pantry managers to make informed decisions about stocking the pantry shelves based on the client’s preferences.

Social implications

An emerging topic within the humanitarian food aid community is better matching of food availability with food that is desired in a way that minimizes food waste. This is achieved by providing more choice to food pantry users. This work shows how pantries can incorporate client preferences in inventory stocking decisions.

Originality/value

This study contributes to the literature on food pantry operations by providing a novel decision support system for pantry managers to aid in stocking their shelves according to client preferences.

Details

Journal of Humanitarian Logistics and Supply Chain Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2042-6747

Keywords

Article
Publication date: 1 November 2023

Herbert Mattord, Kathleen Kotwica, Michael Whitman and Evan Battaglia

The purpose of this paper is to explore the current practices in security convergence among and between corporate security and cybersecurity processes in commercial enterprises.

Abstract

Purpose

The purpose of this paper is to explore the current practices in security convergence among and between corporate security and cybersecurity processes in commercial enterprises.

Design/methodology/approach

This paper is the first phase in a planned multiphase project to better understand current practices in security optimization efforts being implemented by commercial organizations exploring means and methods to operate securely while reducing operating costs. The research questions being examined are: What are the general levels of interest in cybersecurity and corporate security convergence? How well do the perspectives on convergence align between organizations? To what extent are organizations pursuing convergence? and How are organizations achieving the anticipated outcomes from convergence?

Findings

In organizations, the evolution to a more optimized security structure, either merged or partnered, was traditionally due to unplanned or unforeseen events; e.g. a spin-off/acquisition, new security leadership or a negative security incident was the initiator. This is in contrast to a proactive management decision or formal plan to change or enhance the security structure for reasons that include reducing costs of operations and/or improving outcomes to reduce operational risks. The dominant exception was in response to regulatory requirements. Preliminary findings suggest that outcomes from converged organizations are not necessarily more optimized in situations that are organizationally merged under a single leader. Optimization may ultimately depend on the strength of relationships and openness to collaboration between management, cybersecurity and corporate security personnel.

Research limitations/implications

This report and the number of respondents to its survey do not support generalizable findings. There are too few in each category to make reliable predictions and in analysis, there was an insufficient quantity of responses in most categories to allow supportable conclusions to be drawn.

Practical implications

Practitioners may find useful contextual clues to their needs for convergence or in response to directives for convergence from this report on what is found in some other organizations.

Social implications

Improved effectiveness and/or reduced costs for organizational cybersecurity would be a useful social outcome as organizations become more efficient in the face of increasing levels of cyber security threats.

Originality/value

Convergence as a concept has been around for some time now in both the practice and research communities. It was initially promoted formally by ASIS International and ISACA in 2005. Yet there is no universally agreed-upon definition for the term or the practices undertaken to achieve it. In addition, the business drivers and practices undertaken to achieve it are still not fully understood. If convergence or optimization of converged operations offers a superior operational construct compared to other structures, it is incumbent to discover if there are measurable benefits. This research hopes to define the concept of security collaboration optimization more fully. The eventual goal is to develop and promote a tool useful for organizations to measure where they are on such a continuum.

Details

Information & Computer Security, vol. 32 no. 2
Type: Research Article
ISSN: 2056-4961

Keywords

Article
Publication date: 30 April 2024

Luigi Morfini, Fankai Meng, Margherita Beretta, Jozef Vleugels, Roberto Spina and Eleonora Ferraris

This study aims to investigate the performance of filament-based material extrusion additive manufacturing (MEX), combined with debinding and sintering, as a novel approach to…

Abstract

Purpose

This study aims to investigate the performance of filament-based material extrusion additive manufacturing (MEX), combined with debinding and sintering, as a novel approach to manufacturing ceramic components.

Design/methodology/approach

A commercial ZrO2 filament was selected and analysed by infra-red (IR) spectroscopy, rheology and thermo-gravimetry. The influence of the print parameters (layer thickness, flow rate multiplier, printing speed) and sintering cycle were investigated to define a suitable printing and sintering strategy. Biaxial flexure tests were applied on sintered discs realised with optimised printing strategies, and the results were analysed via Weibull statistics to evaluate the mechanical properties of printed components. The hardness and thermal conductivity of sintered components were also tested.

Findings

Layer thickness and flow rate multiplier of the printing process were proved to have significant effect on the density of as-printed parts. Optimised samples display a sintered density >99% of the theoretical density, 20% linear sintering shrinkage, a characteristic flexural strength of 871 MPa with a Weibull modulus of 4.9, a Vickers hardness of 12.90 ± 0.3 GPa and a thermal conductivity of 3.62 W/mK. Gyroids were printed for demonstration purposes.

Originality/value

To the best of the authors’ knowledge, this work is the first to apply biaxial flexure tests and Weibull statistics to additively manufactured MEX zirconia components, hence providing comparable results to other additive technologies. Moreover, fractography analysis builds the connection between printing defects and the fracture mechanism of bending. This study also provides guidelines for fabricating high-density zirconia components with MEX.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 12 March 2024

Shuowen Yan, Pu Xue, Long Liu and M.S. Zahran

This study aims to investigate the design and optimization of landing gear buffers to improve the landing-phase comfort of civil aircraft.

Abstract

Purpose

This study aims to investigate the design and optimization of landing gear buffers to improve the landing-phase comfort of civil aircraft.

Design/methodology/approach

The vibration comfort during the landing and taxiing phases is calculated and evaluated based on the flight-testing data for a type of civil aircraft. The calculation and evaluation are under the guidance of the vibration comfort standard of GB/T13441.1-2007 and related files. The authors establish here a rigid-flexible coupled multibody dynamics finite element model of one full-size aircraft. Furthermore, the authors also implement a dynamic simulation for the landing and taxiing processes. Also, an analysis of how the main parameters of the buffers affect the vibration comfort is presented. Finally, the optimization of the single-chamber and double-chamber buffers in the landing gear is performed considering vibration comfort.

Findings

The double-chamber buffer with optimized parameters in landing gear can improve the vibration comfort of the aircraft during the landing and taxiing phases. Moreover, the comfort index can be increased by 25.6% more than that of a single-chamber type.

Originality/value

To the best of the authors’ knowledge, this study first investigates the evaluation methods and evaluation indexes on the aircraft vibration comfort, then further conducts the optimization of the parameters of landing gear buffer with different structures, so as to improve the comfort of aircraft passengers during landing process. Most of the current studies on aircraft landing gear have focused on the strength and safety of the landing gear, with very limited research on cabin vibration comfort during landing and subsequent taxiing because of the coupling of runway surface unevenness and airframe vibration.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Open Access
Article
Publication date: 3 April 2024

Tatiana da Costa Reis Moreira, Daniel Luiz de Mattos Nascimento, Yelena Smirnova and Ana Carla de Souza Gomes dos Santos

This paper explores Lean Six Sigma principles and the DMAIC (define, measure, analyze, improve, control) methodology to propose a new Lean Six Sigma 4.0 (LSS 4.0) framework for…

Abstract

Purpose

This paper explores Lean Six Sigma principles and the DMAIC (define, measure, analyze, improve, control) methodology to propose a new Lean Six Sigma 4.0 (LSS 4.0) framework for employee occupational exams and address the real-world issue of high-variability exams that may arise.

Design/methodology/approach

This study uses mixed methods, combining qualitative and quantitative data collection. A detailed case study assesses the impact of LSS interventions on the exam management process and tests the applicability of the proposed LSS 4.0 framework for employee occupational exams.

Findings

The results reveal that changing the health service supplier in the explored organization caused a substantial raise in occupational exams, leading to increased costs. By using syntactic interoperability, lean, six sigma and DMAIC approaches, improvements were identified, addressing process deviations and information requirements. Implementing corrective actions improved the exam process, reducing the number of exams and associated expenses.

Research limitations/implications

It is important to acknowledge certain limitations, such as the specific context of the case study and the exclusion of certain exam categories.

Practical implications

The practical implications of this research are substantial, providing organizations with valuable managerial insights into improving efficiency, reducing costs and ensuring regulatory compliance while managing occupational exams.

Originality/value

This study fills a research gap by applying LSS 4.0 to occupational exam management, offering a practical framework for organizations. It contributes to the existing knowledge base by addressing a relatively novel context and providing a detailed roadmap for process optimization.

Details

International Journal of Lean Six Sigma, vol. 15 no. 8
Type: Research Article
ISSN: 2040-4166

Keywords

1 – 10 of 521