Search results

1 – 10 of over 1000
Open Access
Article
Publication date: 23 January 2023

Md.Tanvir Ahmed, Hridi Juberi, A.B.M. Mainul Bari, Muhommad Azizur Rahman, Aquib Rahman, Md. Ashfaqur Arefin, Ilias Vlachos and Niaz Quader

This study aims to investigate the effect of vibration on ceramic tools under dry cutting conditions and find the optimum cutting condition for the hardened steel machining…

1096

Abstract

Purpose

This study aims to investigate the effect of vibration on ceramic tools under dry cutting conditions and find the optimum cutting condition for the hardened steel machining process in a computer numerical control (CNC) lathe machine.

Design/methodology/approach

In this research, an integrated fuzzy TOPSIS-based Taguchi L9 optimization model has been applied for the multi-objective optimization (MOO) of the hard-turning responses. Additionally, the effect of vibration on the ceramic tool wear was investigated using Analysis of Variance (ANOVA) and Fast Fourier Transform (FFT).

Findings

The optimum cutting conditions for the multi-objective responses were obtained at 98 m/min cutting speed, 0.1 mm/rev feed rate and 0.2 mm depth of cut. According to the ANOVA of the input cutting parameters with respect to response variables, feed rate has the most significant impact (53.79%) on the control of response variables. From the vibration analysis, the feed rate, with a contribution of 34.74%, was shown to be the most significant process parameter influencing excessive vibration and consequent tool wear.

Research limitations/implications

The MOO of response parameters at the optimum cutting parameter settings can significantly improve productivity in the dry turning of hardened steel and control over the input process parameters during machining.

Originality/value

Most studies on optimizing responses in dry hard-turning performed in CNC lathe machines are based on single-objective optimization. Additionally, the effect of vibration on the ceramic tool during MOO of hard-turning has not been studied yet.

Details

International Journal of Industrial Engineering and Operations Management, vol. 5 no. 1
Type: Research Article
ISSN: 2690-6090

Keywords

Open Access
Article
Publication date: 5 November 2020

Hongyuan Wang and Jingcheng Wang

The purpose of this paper aims to design an optimization control for tunnel boring machine (TBM) based on geological identification. For unknown geological condition, the authors…

Abstract

Purpose

The purpose of this paper aims to design an optimization control for tunnel boring machine (TBM) based on geological identification. For unknown geological condition, the authors need to identify them before further optimization. For fully considering multiple crucial performance of TBM, the authors establish an optimization problem for TBM so that it can be adapted to varying geology. That is, TBM can operate optimally under corresponding geology, which is called geology-adaptability.

Design/methodology/approach

This paper adopted k-nearest neighbor (KNN) algorithm with modification to identify geological conditions. The modification includes adjustment of weights in voting procedure and similarity distance measurement, which at suitable for engineering and enhance accuracy of prediction. The authors also design several key performances of TBM during operation, and built a multi-objective function. Further, the multi-objective function has been transformed into a single objective function by weighted-combination. The reformulated optimization was solved by genetic algorithm in the end.

Findings

This paper provides a support for decision-making in TBM control. Through proposed optimization control, the advance speed of TBM has been enhanced dramatically in each geological condition, compared with the results before optimizing. Meanwhile, other performances are acceptable and the method is verified by in situ data.

Originality/value

This paper fulfills an optimization control of TBM considering several key performances during excavating. The optimization is conducted under different geological conditions so that TBM has geological-adaptability.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. 1 no. 1
Type: Research Article
ISSN: 2633-6596

Keywords

Open Access
Article
Publication date: 12 October 2023

V. Chowdary Boppana and Fahraz Ali

This paper presents an experimental investigation in establishing the relationship between FDM process parameters and tensile strength of polycarbonate (PC) samples using the…

1000

Abstract

Purpose

This paper presents an experimental investigation in establishing the relationship between FDM process parameters and tensile strength of polycarbonate (PC) samples using the I-Optimal design.

Design/methodology/approach

I-optimal design methodology is used to plan the experiments by means of Minitab-17.1 software. Samples are manufactured using Stratsys FDM 400mc and tested as per ISO standards. Additionally, an artificial neural network model was developed and compared to the regression model in order to select an appropriate model for optimisation. Finally, the genetic algorithm (GA) solver is executed for improvement of tensile strength of FDM built PC components.

Findings

This study demonstrates that the selected process parameters (raster angle, raster to raster air gap, build orientation about Y axis and the number of contours) had significant effect on tensile strength with raster angle being the most influential factor. Increasing the build orientation about Y axis produced specimens with compact structures that resulted in improved fracture resistance.

Research limitations/implications

The fitted regression model has a p-value less than 0.05 which suggests that the model terms significantly represent the tensile strength of PC samples. Further, from the normal probability plot it was found that the residuals follow a straight line, thus the developed model provides adequate predictions. Furthermore, from the validation runs, a close agreement between the predicted and actual values was seen along the reference line which further supports satisfactory model predictions.

Practical implications

This study successfully investigated the effects of the selected process parameters - raster angle, raster to raster air gap, build orientation about Y axis and the number of contours - on tensile strength of PC samples utilising the I-optimal design and ANOVA. In addition, for prediction of the part strength, regression and ANN models were developed. The selected ANN model was optimised using the GA-solver for determination of optimal parameter settings.

Originality/value

The proposed ANN-GA approach is more appropriate to establish the non-linear relationship between the selected process parameters and tensile strength. Further, the proposed ANN-GA methodology can assist in manufacture of various industrial products with Nylon, polyethylene terephthalate glycol (PETG) and PET as new 3DP materials.

Details

International Journal of Industrial Engineering and Operations Management, vol. 6 no. 2
Type: Research Article
ISSN: 2690-6090

Keywords

Open Access
Article
Publication date: 29 January 2024

Miaoxian Guo, Shouheng Wei, Chentong Han, Wanliang Xia, Chao Luo and Zhijian Lin

Surface roughness has a serious impact on the fatigue strength, wear resistance and life of mechanical products. Realizing the evolution of surface quality through theoretical…

Abstract

Purpose

Surface roughness has a serious impact on the fatigue strength, wear resistance and life of mechanical products. Realizing the evolution of surface quality through theoretical modeling takes a lot of effort. To predict the surface roughness of milling processing, this paper aims to construct a neural network based on deep learning and data augmentation.

Design/methodology/approach

This study proposes a method consisting of three steps. Firstly, the machine tool multisource data acquisition platform is established, which combines sensor monitoring with machine tool communication to collect processing signals. Secondly, the feature parameters are extracted to reduce the interference and improve the model generalization ability. Thirdly, for different expectations, the parameters of the deep belief network (DBN) model are optimized by the tent-SSA algorithm to achieve more accurate roughness classification and regression prediction.

Findings

The adaptive synthetic sampling (ADASYN) algorithm can improve the classification prediction accuracy of DBN from 80.67% to 94.23%. After the DBN parameters were optimized by Tent-SSA, the roughness prediction accuracy was significantly improved. For the classification model, the prediction accuracy is improved by 5.77% based on ADASYN optimization. For regression models, different objective functions can be set according to production requirements, such as root-mean-square error (RMSE) or MaxAE, and the error is reduced by more than 40% compared to the original model.

Originality/value

A roughness prediction model based on multiple monitoring signals is proposed, which reduces the dependence on the acquisition of environmental variables and enhances the model's applicability. Furthermore, with the ADASYN algorithm, the Tent-SSA intelligent optimization algorithm is introduced to optimize the hyperparameters of the DBN model and improve the optimization performance.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. 5 no. 1
Type: Research Article
ISSN: 2633-6596

Keywords

Open Access
Article
Publication date: 30 August 2021

Kailun Feng, Shiwei Chen, Weizhuo Lu, Shuo Wang, Bin Yang, Chengshuang Sun and Yaowu Wang

Simulation-based optimisation (SO) is a popular optimisation approach for building and civil engineering construction planning. However, in the framework of SO, the simulation is…

1606

Abstract

Purpose

Simulation-based optimisation (SO) is a popular optimisation approach for building and civil engineering construction planning. However, in the framework of SO, the simulation is continuously invoked during the optimisation trajectory, which increases the computational loads to levels unrealistic for timely construction decisions. Modification on the optimisation settings such as reducing searching ability is a popular method to address this challenge, but the quality measurement of the obtained optimal decisions, also termed as optimisation quality, is also reduced by this setting. Therefore, this study aims to develop an optimisation approach for construction planning that reduces the high computational loads of SO and provides reliable optimisation quality simultaneously.

Design/methodology/approach

This study proposes the optimisation approach by modifying the SO framework through establishing an embedded connection between simulation and optimisation technologies. This approach reduces the computational loads and ensures the optimisation quality associated with the conventional SO approach by accurately learning the knowledge from construction simulations using embedded ensemble learning algorithms, which automatically provides efficient and reliable fitness evaluations for optimisation iterations.

Findings

A large-scale project application shows that the proposed approach was able to reduce computational loads of SO by approximately 90%. Meanwhile, the proposed approach outperformed SO in terms of optimisation quality when the optimisation has limited searching ability.

Originality/value

The core contribution of this research is to provide an innovative method that improves efficiency and ensures effectiveness, simultaneously, of the well-known SO approach in construction applications. The proposed method is an alternative approach to SO that can run on standard computing platforms and support nearly real-time construction on-site decision-making.

Details

Engineering, Construction and Architectural Management, vol. 30 no. 1
Type: Research Article
ISSN: 0969-9988

Keywords

Open Access
Article
Publication date: 30 August 2024

Mingzhe Tao, Jinghua Xu, Shuyou Zhang and Jianrong Tan

This work aims to provide a rapid robust optimization design solution for parallel robots or mechanisms, thereby circumventing inefficiencies and wastage caused by empirical…

Abstract

Purpose

This work aims to provide a rapid robust optimization design solution for parallel robots or mechanisms, thereby circumventing inefficiencies and wastage caused by empirical design, as well as numerous physical verifications, which can be employed for creating high-quality prototypes of parallel robots in a variety of applications.

Design/methodology/approach

A novel subregional meta-heuristic iteration (SMI) method is proposed for the optimization of parallel robots. Multiple subregional optimization objectives are established and optimization is achieved through the utilisation of an enhanced meta-heuristic optimization algorithm, which roughly employs chaotic mapping in the initialization strategy to augment the diversity of the initial solution. The non-dominated sorting method is utilised for updating strategies, thereby achieving multi-objective optimization.

Findings

The actuator error under the same trajectory is visibly reduced after SMI, with a maximum reduction of 6.81% and an average reduction of 1.46%. Meanwhile, the response speed, maximum bearing capacity and stiffness of the mechanism are enhanced by 63.83, 43.98 and 97.51%, respectively. The optimized mechanism is more robust and the optimization process is efficient.

Originality/value

The proposed robustness multi-objective optimization via SMI is more effective in improving the performance and precision of the parallel mechanisms in various applications. Furthermore, it provides a solution for the rapid and high-quality optimization design of parallel robots.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Open Access
Article
Publication date: 14 June 2024

Si Chen, Haoran Lv, Yinming Zhao and Minning Wang

This paper aims to provide a new method to study and improve the dynamic characteristics of the four-column resistance strain force sensor through the elastomer structure design…

Abstract

Purpose

This paper aims to provide a new method to study and improve the dynamic characteristics of the four-column resistance strain force sensor through the elastomer structure design and optimization.

Design/methodology/approach

Based on the mechanism analysis method, the authors first present a dynamic characteristic model of the four-column resistance strain force sensors’ elastomer. Then, the authors verified and modified the model according to the Solidworks finite element simulation results. Finally, the authors designed and optimized two types of four-column elastomers based on the dynamic characteristic model and verified the improvement of sensor dynamic performance through a hammer knock dynamic experiment.

Findings

The Solidworks finite element simulation and hammer knock dynamic experiment results show that the relative error of the model is less than 10%, which confirms the accuracy of the model. The dynamic performance of the sensors based on the model can be improved by more than 30%, which is a great improvement in sensor dynamic performance.

Originality/value

The authors first present a dynamic characteristic model of the four-column elastomer and optimize the four-column sensors successfully based on the mechanism analysis method. And a new method to study and improve the dynamic characteristics of the resistance is provided.

Details

Sensor Review, vol. 44 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

Open Access
Article
Publication date: 3 September 2020

Zhaosu Meng, Xiaotong Liu, Kedong Yin, Xuemei Li and Xinchang Guo

The purpose of this paper is to examine the effectiveness of an improved dummy variables control grey model (DVCGM) considering the hysteresis effect of government policies in…

1389

Abstract

Purpose

The purpose of this paper is to examine the effectiveness of an improved dummy variables control grey model (DVCGM) considering the hysteresis effect of government policies in China's energy intensity (EI) forecasting.

Design/methodology/approach

Energy consumption is considered as an important driver of economic development. China has introduced policies those aim at the optimization of energy structure and EI. In this study, EI is forecasted by an improved DVCGM, considering the hysteresis effect of energy-saving policies of the government. A nonlinear optimization method based on particle swarm optimization (PSO) algorithm is constructed to calculate the hysteresis parameter. A one-step rolling mechanism is applied to provide input data of the prediction model. Grey model (GM) (1, N), DVCGM (1, N) and ARIMA model are applied to test the accuracy of the improved DVCGM (1, N) model prediction.

Findings

The results show that the improved DVCGM provides reliable results and works well in simulation and predictions using multivariable data in small sample size and time-lag virtual variable. Accordingly, the improved DVCGM notes the hysteresis effect of government policies and significantly improves the prediction accuracy of China's EI than the other three models.

Originality/value

This study estimates the EI considering the hysteresis effect of energy-saving policies in China by using an improved DVCGM. The main contribution of this paper is to propose a model to estimate EI, considering the hysteresis effect of energy-saving policies and improve forecasting accuracy.

Details

Grey Systems: Theory and Application, vol. 11 no. 3
Type: Research Article
ISSN: 2043-9377

Keywords

Open Access
Article
Publication date: 23 August 2022

Armin Mahmoodi, Leila Hashemi, Milad Jasemi, Jeremy Laliberté, Richard C. Millar and Hamed Noshadi

In this research, the main purpose is to use a suitable structure to predict the trading signals of the stock market with high accuracy. For this purpose, two models for the…

1217

Abstract

Purpose

In this research, the main purpose is to use a suitable structure to predict the trading signals of the stock market with high accuracy. For this purpose, two models for the analysis of technical adaptation were used in this study.

Design/methodology/approach

It can be seen that support vector machine (SVM) is used with particle swarm optimization (PSO) where PSO is used as a fast and accurate classification to search the problem-solving space and finally the results are compared with the neural network performance.

Findings

Based on the result, the authors can say that both new models are trustworthy in 6 days, however, SVM-PSO is better than basic research. The hit rate of SVM-PSO is 77.5%, but the hit rate of neural networks (basic research) is 74.2.

Originality/value

In this research, two approaches (raw-based and signal-based) have been developed to generate input data for the model: raw-based and signal-based. For comparison, the hit rate is considered the percentage of correct predictions for 16 days.

Details

Asian Journal of Economics and Banking, vol. 7 no. 1
Type: Research Article
ISSN: 2615-9821

Keywords

Open Access
Article
Publication date: 26 July 2021

David Marschall, Sigfrid-Laurin Sindinger, Herbert Rippl, Maria Bartosova and Martin Schagerl

Laser sintering of polyamide lattice-based lightweight fairing components for subsequent racetrack testing requires a high quality and a reliable design. Hence, the purpose of…

Abstract

Purpose

Laser sintering of polyamide lattice-based lightweight fairing components for subsequent racetrack testing requires a high quality and a reliable design. Hence, the purpose of this study was to develop a design methodology for such additively manufactured prototypes, considering efficient generation and structural simulation of boundary conformal non-periodic lattices, optimization of production parameters as well as experimental validation.

Design/methodology/approach

Multi-curved, sandwich structure-based demonstrators were designed, simulated and experimentally tested with boundary conformal lattice cells. The demonstrator’s non-periodic lattice cells were simplified by forward homogenization processes. To represent the stiffness of the top and bottom face sheet, constant isotropic and mapped transversely isotropic simulation approaches were compared. The dimensional accuracy of lattice cells and demonstrators were measured with a gauge caliper and a three-dimensional scanning system. The optimized process parameters for lattice structures were transferred onto a large volume laser sintering system. The stiffness of each finite element analysis was verified by an experimental test setup including a digital image correlation system.

Findings

The stiffness prediction of the mapped was superior to the constant approach and underestimated the test results with −6.5%. Using a full scale fairing the applicability of the development process was successfully demonstrated.

Originality/value

The design approach elaborated in this research covers aspects from efficient geometry generation over structural simulation to experimental testing of produced parts. This methodology is not only relevant in the context of motor sports but is transferrable for all additively manufactured large scale components featuring a complex lattice sub-structure and is, therefore, relevant across industries.

Details

Rapid Prototyping Journal, vol. 27 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of over 1000