Search results

1 – 10 of 10
Content available

Abstract

Details

Kybernetes, vol. 41 no. 7/8
Type: Research Article
ISSN: 0368-492X

Open Access
Article
Publication date: 14 October 2021

Sakhri Aicha and Ahcene Merad

This study describes the applicability of the a priori estimate method on a nonlocal nonlinear fractional differential equation for which the weak solution's existence and…

Abstract

Purpose

This study describes the applicability of the a priori estimate method on a nonlocal nonlinear fractional differential equation for which the weak solution's existence and uniqueness are proved. The authors divide the proof into two sections for the linear associated problem; the authors derive the a priori bound and demonstrate the operator range density that is generated. The authors solve the nonlinear problem by introducing an iterative process depending on the preceding results.

Design/methodology/approach

The functional analysis method is the a priori estimate method or energy inequality method.

Findings

The results show the efficiency of a priori estimate method in the case of time-fractional order differential equations with nonlocal conditions. Our results also illustrate the existence and uniqueness of the continuous dependence of solutions on fractional order differential equations with nonlocal conditions.

Research limitations/implications

The authors’ work can be considered a contribution to the development of the functional analysis method that is used to prove well-positioned problems with fractional order.

Originality/value

The authors confirm that this work is original and has not been published elsewhere, nor is it currently under consideration for publication elsewhere.

Details

Arab Journal of Mathematical Sciences, vol. 29 no. 2
Type: Research Article
ISSN: 1319-5166

Keywords

Open Access
Article
Publication date: 27 November 2018

Arshi Meraj and Dwijendra N. Pandey

This paper is concerned with the existence of mild solutions for a class of fractional semilinear integro-differential equations having non-instantaneous impulses. The result is…

Abstract

This paper is concerned with the existence of mild solutions for a class of fractional semilinear integro-differential equations having non-instantaneous impulses. The result is obtained by using noncompact semigroup theory and fixed point theorem. The obtained result is illustrated by an example at the end.

Details

Arab Journal of Mathematical Sciences, vol. 26 no. 1/2
Type: Research Article
ISSN: 1319-5166

Keywords

Open Access
Article
Publication date: 3 February 2023

M. Iadh Ayari and Sabri T.M. Thabet

This paper aims to study qualitative properties and approximate solutions of a thermostat dynamics system with three-point boundary value conditions involving a nonsingular kernel…

Abstract

Purpose

This paper aims to study qualitative properties and approximate solutions of a thermostat dynamics system with three-point boundary value conditions involving a nonsingular kernel operator which is called Atangana-Baleanu-Caputo (ABC) derivative for the first time. The results of the existence and uniqueness of the solution for such a system are investigated with minimum hypotheses by employing Banach and Schauder's fixed point theorems. Furthermore, Ulam-Hyers (UH) stability, Ulam-Hyers-Rassias UHR stability and their generalizations are discussed by using some topics concerning the nonlinear functional analysis. An efficiency of Adomian decomposition method (ADM) is established in order to estimate approximate solutions of our problem and convergence theorem is proved. Finally, four examples are exhibited to illustrate the validity of the theoretical and numerical results.

Design/methodology/approach

This paper considered theoretical and numerical methodologies.

Findings

This paper contains the following findings: (1) Thermostat fractional dynamics system is studied under ABC operator. (2) Qualitative properties such as existence, uniqueness and Ulam–Hyers–Rassias stability are established by fixed point theorems and nonlinear analysis topics. (3) Approximate solution of the problem is investigated by Adomain decomposition method. (4) Convergence analysis of ADM is proved. (5) Examples are provided to illustrate theoretical and numerical results. (6) Numerical results are compared with exact solution in tables and figures.

Originality/value

The novelty and contributions of this paper is to use a nonsingular kernel operator for the first time in order to study the qualitative properties and approximate solution of a thermostat dynamics system.

Details

Arab Journal of Mathematical Sciences, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1319-5166

Keywords

Open Access
Article
Publication date: 8 August 2022

Gopal Shruthi and Murugan Suvinthra

The purpose of this paper is to study large deviations for the solution processes of a stochastic equation incorporated with the effects of nonlocal condition.

Abstract

Purpose

The purpose of this paper is to study large deviations for the solution processes of a stochastic equation incorporated with the effects of nonlocal condition.

Design/methodology/approach

A weak convergence approach is adopted to establish the Laplace principle, which is same as the large deviation principle in a Polish space. The sufficient condition for any family of solutions to satisfy the Laplace principle formulated by Budhiraja and Dupuis is used in this work.

Findings

Freidlin–Wentzell type large deviation principle holds good for the solution processes of the stochastic functional integral equation with nonlocal condition.

Originality/value

The asymptotic exponential decay rate of the solution processes of the considered equation towards its deterministic counterpart can be estimated using the established results.

Details

Arab Journal of Mathematical Sciences, vol. 30 no. 1
Type: Research Article
ISSN: 1319-5166

Keywords

Open Access
Article
Publication date: 15 December 2020

Tarikul Islam and Armina Akter

Fractional order nonlinear evolution equations (FNLEEs) pertaining to conformable fractional derivative are considered to be revealed for well-furnished analytic solutions due to…

Abstract

Purpose

Fractional order nonlinear evolution equations (FNLEEs) pertaining to conformable fractional derivative are considered to be revealed for well-furnished analytic solutions due to their importance in the nature of real world. In this article, the autors suggest a productive technique, called the rational fractional (DξαG/G)-expansion method, to unravel the nonlinear space-time fractional potential Kadomtsev–Petviashvili (PKP) equation, the nonlinear space-time fractional Sharma–Tasso–Olver (STO) equation and the nonlinear space-time fractional Kolmogorov–Petrovskii–Piskunov (KPP) equation. A fractional complex transformation technique is used to convert the considered equations into the fractional order ordinary differential equation. Then the method is employed to make available their solutions. The constructed solutions in terms of trigonometric function, hyperbolic function and rational function are claimed to be fresh and further general in closed form. These solutions might play important roles to depict the complex physical phenomena arise in physics, mathematical physics and engineering.

Design/methodology/approach

The rational fractional (DξαG/G)-expansion method shows high performance and might be used as a strong tool to unravel any other FNLEEs. This method is of the form U(ξ)=i=0nai(DξαG/G)i/i=0nbi(DξαG/G)i.

Findings

Achieved fresh and further abundant closed form traveling wave solutions to analyze the inner mechanisms of complex phenomenon in nature world which will bear a significant role in the of research and will be recorded in the literature.

Originality/value

The rational fractional (DξαG/G)-expansion method shows high performance and might be used as a strong tool to unravel any other FNLEEs. This method is newly established and productive.

Open Access
Article
Publication date: 31 May 2022

Salah Benhiouna, Azzeddine Bellour and Rachida Amiar

A generalization of Ascoli–Arzelá theorem in Banach spaces is established. Schauder's fixed point theorem is used to prove the existence of a solution for a boundary value problem…

Abstract

Purpose

A generalization of Ascoli–Arzelá theorem in Banach spaces is established. Schauder's fixed point theorem is used to prove the existence of a solution for a boundary value problem of higher order. The authors’ results are obtained under, rather, general assumptions.

Design/methodology/approach

First, a generalization of Ascoli–Arzelá theorem in Banach spaces in Cn is established. Second, this new generalization with Schauder's fixed point theorem to prove the existence of a solution for a boundary value problem of higher order is used. Finally, an illustrated example is given.

Findings

There is no funding.

Originality/value

In this work, a new generalization of Ascoli–Arzelá theorem in Banach spaces in Cn is established. To the best of the authors’ knowledge, Ascoli–Arzelá theorem is given only in Banach spaces of continuous functions. In the second part, this new generalization with Schauder's fixed point theorem is used to prove the existence of a solution for a boundary value problem of higher order, where the derivatives appear in the non-linear terms.

Details

Arab Journal of Mathematical Sciences, vol. 29 no. 2
Type: Research Article
ISSN: 1319-5166

Keywords

Open Access
Article
Publication date: 14 March 2019

Sabri T.M. Thabet, Bashir Ahmad and Ravi P. Agarwal

In this paper, we study a Cauchy-type problem for Hilfer fractional integrodifferential equations with boundary conditions. The existence of solutions for the given problem is…

Abstract

In this paper, we study a Cauchy-type problem for Hilfer fractional integrodifferential equations with boundary conditions. The existence of solutions for the given problem is proved by applying measure of noncompactness technique in an abstract weighted space. Moreover, we use generalized Gronwall inequality with singularity to establish continuous dependence and uniqueness of ϵ-approximate solutions.

Content available
Article
Publication date: 1 July 2006

Slawomir Wiak

246

Abstract

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 25 no. 3
Type: Research Article
ISSN: 0332-1649

Open Access
Article
Publication date: 26 September 2023

Paravee Maneejuk, Binxiong Zou and Woraphon Yamaka

The primary objective of this study is to investigate whether the inclusion of convertible bond prices as important inputs into artificial neural networks can lead to improved…

Abstract

Purpose

The primary objective of this study is to investigate whether the inclusion of convertible bond prices as important inputs into artificial neural networks can lead to improved accuracy in predicting Chinese stock prices. This novel approach aims to uncover the latent potential inherent in convertible bond dynamics, ultimately resulting in enhanced precision when forecasting stock prices.

Design/methodology/approach

The authors employed two machine learning models, namely the backpropagation neural network (BPNN) model and the extreme learning machine neural networks (ELMNN) model, on empirical Chinese financial time series data.

Findings

The results showed that the convertible bond price had a strong predictive power for low-market-value stocks but not for high-market-value stocks. The BPNN algorithm performed better than the ELMNN algorithm in predicting stock prices using the convertible bond price as an input indicator for low-market-value stocks. In contrast, ELMNN showed a significant decrease in prediction accuracy when the convertible bond price was added.

Originality/value

This study represents the initial endeavor to integrate convertible bond data into both the BPNN model and the ELMNN model for the purpose of predicting Chinese stock prices.

Details

Asian Journal of Economics and Banking, vol. 7 no. 3
Type: Research Article
ISSN: 2615-9821

Keywords

1 – 10 of 10