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Abstract

Purpose –A generalization of Ascoli–Arzel�a theorem in Banach spaces is established. Schauder’s fixed point
theorem is used to prove the existence of a solution for a boundary value problem of higher order. The authors’
results are obtained under, rather, general assumptions.
Design/methodology/approach –First, a generalization of Ascoli–Arzel�a theorem inBanach spaces inCn is
established. Second, this new generalization with Schauder’s fixed point theorem to prove the existence of a
solution for a boundary value problem of higher order is used. Finally, an illustrated example is given.
Findings – There is no funding.
Originality/value – In this work, a new generalization of Ascoli–Arzel�a theorem in Banach spaces in Cn is
established.To thebest of the authors’knowledge,Ascoli–Arzel�a theorem isgivenonly inBanachspacesof continuous
functions. In the secondpart, this newgeneralizationwith Schauder’s fixed point theorem is used to prove the existence
of a solution for a boundary value problem of higher order, where the derivatives appear in the non-linear terms.

Keywords Generalization of Ascoli–Arzel�a theorem, Higher-order boundary value problem, Fixed point

theorem

Paper type Research paper

1. Introduction
In this paper, we consider the following higher-order boundary value problem:

uðnÞ þ f
�
t; u; u0; . . . ; uðn−2Þ

� ¼ 0; n≥ 2; t ∈ I ¼ ½0; 1�;
uðiÞð0Þ ¼ 0; 0≤ i≤ n� 3;
αuðn−2Þð0Þ � βuðn−1Þð0Þ ¼ 0;
γuðn−2Þð1Þ þ δuðn−1Þð1Þ ¼ 0:

8>><
>>: (1.1)
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where n is a given positive integer, α, γ > 0, β, δ ≥ 0; f is continuous and

satisfies f ðj s; u0; u1; . . . ; un−2Þj≤ aðsÞ þPn−2
k¼0 bkjukj such that a is continuous on I

and bk ∈Rþ; k ¼ 0; . . . ; n− 2.
Equation (1.1) and its particular forms have been studied by many authors (see, for

example, [1–4, 6, 7, 9–13] and the references therein).
Wong and Agarwal in [13] and Patricia et al. in [12] have studied the following boundary

value problem:

uðnÞ þ λQ
�
t; u; u0; . . . ; uðn−2Þ

� ¼ λP
�
t; u; u0; . . . ; uðn−2Þ

�
uðiÞð0Þ ¼ 0; 0≤ i≤ n� 3;
αuðn−2Þð0Þ � βuðn−1Þð0Þ ¼ 0;
γuðn−2Þð1Þ þ δuðn−1Þð1Þ ¼ 0;

8>><
>>:

under the following condition: there exists continuous functions f: (0, þ ∞) → (0, þ ∞) and
p1; p; q1; q : ð0; 1Þ→R such that

ðiÞ qðtÞ≤Qðt; u0; u1; . . . ; un−2Þ
f ðuÞ ≤ q1ðtÞ; pðtÞ≤Pðt; u0; u1; . . . ; un−2Þ

f ðuÞ ≤ p1ðtÞ:

ðiiÞ qðtÞ � p1ðtÞ≥ 0:

Agarwal and Wong [1] have studied the existence of a positive solution for the problem
(1.1) under the following condition: there exists L ≥ 0 such that

f
�
t; u; u0; . . . ; uðn−2Þ

�þ L≥ 0 on ½0; 1�3 0;∞½ Þn−1;Z 1

0

gðs; sÞ�f �s; u; u0; . . . ; uðn−2Þ�þ L
�
ds≤ λ;

and some other conditions, where the function g is defined in (3.2).
Chyan and Henderson [3] have studied the existence of a positive solution of the following

problem:

uðnÞ þ λqðtÞf ðuÞ ¼ 0;
uðiÞð0Þ ¼ uðn−2Þð1Þ ¼ 0; 0≤ i≤ n� 2:

�

such that f and q are continuous and non-negative functions.
The following analogical problem has been studied by Eloe and Ahmad in [5],

uðnÞ þ f ðt; uÞ ¼ 0; t ∈ ð0; 1Þ
uðiÞð0Þ ¼ 0; 0≤ i≤ n� 2;
αuðηÞ ¼ uð1Þ; 0 < η < 1;

8<
:

The following more general form has been studied by J. R. Graef and T. Moussaoui in [8],

uðnÞ þ f ðt; uÞ ¼ 0; t ∈ ð0; 1Þ
uðiÞð0Þ ¼ 0; 0≤ i≤ n� 2;Xm−2

i¼1
αiuðηiÞ ¼ uð1Þ; 0 < η < 1;

8><
>:

where the derivatives x(i), 0 ≤ i ≤ n � 2 do not appear in the non-linear terms.
Ourmain task in this paper consists of giving a generalization of Ascoli–Arzel�a theorem in

the space Cn(X, E) (the space of functions from a compact subset of R into a Banach space E
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with continuous nth derivative) in order to prove the compactness criteria and to use
Schauder fixed point theorem in the space Cn to prove the existences of a solution for the
higher-order boundary value problem (1.1).

The rest of this paper is organized as follows. In Section 2, we give a generalization of
Ascoli–Arzel�a theorem in the space Cn. The existences of a solution to higher-order boundary
value problem (1.1) are presented in Section 3.

2. A generalization of Ascoli–Arzel�a theorem in Cn

Before stating the main result in this section, we provide the following notations and
definition:

Let E be a Banach space endowed with the norm :k k1, andX be a compact subset ofR. We
note by Cn(X, E) the space of all functions with n continuous derivatives from X to E; this

space is endowed with the norm fk k ¼Pn
i¼0 kf ðiÞk∞ such that fk k

∞
¼ sup

x∈X

f��f ðxÞk1g.
For our purpose, we need the following definition in Cn(X, E).

Definition 2.1. The family F ⊂ Cn(X, E) is called equi-continuous if for every e > 0 there is

δ > 0 such that f ðiÞðxÞ−f ðiÞðyÞ�� ��
1
< ε for all i 5 0, . . ., n and for all x, y ∈ X satisfying

jx � yj < δ.

The family F⊂ Cn(X,E) is called equi-bounded if there is a constantM such that f ðiÞðxÞ�� ��
1
≤M

for all i 5 1, . . ., n, for all f ∈ F and for all x ∈ X.
The following result gives the Ascoli–Arzel�a theorem in the space Cn(X, E)

Theorem 2.2. Let F be a subset of Cn(X, E). Then F is relatively compact if and only if F is
equi-continuous and equi-bounded.

Proof. Assume that F is relatively compact. This means that F is compact. We claim that F

is equi-continuous and equi-bounded. Since F is compact, then it is equi-bounded and since

F ⊂F, we deduce that F is equi-bounded.

To see that F is equi-continuous, let « > 0, then there exists f1, . . ., fm ∈ Cn(X, E) such that

F ⊂B ε
3ðnþ1Þðf1Þ∪ . . .∪B ε

3ðnþ1ÞðfmÞ:

Since f
ðiÞ
j are uniformly continuous, then there exists δ > 0 such that for all x, y ∈ X, if jx �

yj < δ, then for all i 5 0, . . ., n and for all j 5 1, . . ., m

kf ðiÞj ðxÞ � f
ðiÞ
j ðyÞk1 <

ε
3
:

Let f ∈ F, then there exists j ∈ {1, . . ., m} such that f ∈Bε
3
ðfjÞ.

Hence, for all i 5 0, . . ., n

kf ðiÞðxÞ � f ðiÞðyÞk1 ≤ kf ðiÞðxÞ � f
ðiÞ
j ðxÞk1 þ�� f ðiÞj ðxÞ � f

ðiÞ
j ðyÞk1

þ�� f ðiÞðyÞ � f
ðiÞ
j ðyÞk1 < ε:

which implies that F is equi-continuous.
Conversely, assume that F is equi-continuous and equi-bounded. To show that F is

relatively compact it suffices to show that F is totally bounded; indeed if F is totally bounded,
then F is also totally bounded, which implies that F is compact.
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Since F is equi-continuous, then for all x∈X and «> 0, there exists δx> 0 such that if y∈X
and jx � yj < δx, we have for all i 5 0, . . ., n

kf ðiÞðxÞ � f ðiÞðyÞk1 <
ε

4ðnþ 1Þ for all f ∈F:

The collection fBδxðxÞgx∈X is an open cover of the compact subset X; hence there exists x1, x2,

. . ., xm ∈ X such that X ¼ Sm
j¼1

Bδxj
.

which implies that, for all x∈Bδxj
and for all i 5 0, . . ., n

kf ðiÞðxÞ � f ðiÞðxjÞk1 <
ε

4ðnþ 1Þ for all f ∈F :

Since F is equi-bounded, then the set

F ¼ fðf ðxjÞ; f 0ðxjÞ; . . . ; f ðnÞðxjÞÞ; j ¼ 1; . . . ;m; f ∈Fg is bounded.
Since a bounded set in Rnþ1 is totally bounded, then there exists a subset

fðy1;i; y2;i; . . . ; ynþ1;iÞ; i ¼ 1; . . . ; kg⊂Rnþ1 such that

F ⊂

[k

i¼1
B ε

4ðnþ1Þ

�
y1;i; y2;i; . . . ; ynþ1;i

�
For any application w: {1, . . ., m} → {1, . . ., k}, we define the set

F w ¼ f ∈F :
�
f ðxjÞ; f 0ðxjÞ; . . . ; f ðnÞðxjÞ

	
∈B ε

4ðnþ1Þ

�
y1;wj

; y2;wj
; . . . ; ynþ1;wj

	
; j ¼ 1; . . . ;m

n o
:

It is clear that F ¼ SFw. Now, we show that the diameter of Fw is less than «.
Let f ; g∈Fw and x ∈ X, then there exists j ∈ {1, . . ., m} such that x∈Bδxj

.
Hence, for all i 5 1, . . ., n

kf ðiÞðxÞ � gðiÞðxÞk1 ≤
���f ðiÞðxÞ � f ðiÞðxjÞk1 þ

���f ðiÞðxjÞ � yiþ1;wj
k1

þ
���gðiÞðxjÞ � yiþ1;wj

k1 þ
���gðiÞðxjÞ � gðiÞðxÞk1 ≤ ε:

which implies that the diameter of F w is less than «. Therefore, F can be covered by finitely
many sets of diameter less than «.

Thus F is totally bounded, and the proof is completed. ,

3. Application to the solution of a higher-order boundary value problem
In this section, we study the existence of a solution for the problem (1.1).

It is easy to check, (see [1]), that u is a solution of (1.1) inCnðI ;RÞ if and only if u is a solution
of the following integro-differential equation:

uðtÞ ¼
Z 1

0

Gðt; sÞf �s; u; u0; . . . ; uðn−2Þ�ds; (3.1)

in Cn−2ðI ;RÞ, such that gðt; sÞ ¼ vn−2Gðt;sÞ
vtn−2

is the Green’s function of the second-order boundary
value problem
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�uð2Þ ¼ 0; t ∈ ½0; 1�;
αuð0Þ � βu0ð0Þ ¼ 0;
γuð1Þ þ δu0ð1Þ ¼ 0:

8<
:

Moreover,

gðt; sÞ ¼ 1

αγ þ αδþ βγ
ðβ þ αsÞ½δþ γð1� tÞ�; 0≤ s≤ t;
ðβ þ αtÞ½δþ γð1� sÞ�; t ≤ s≤ 1:

�
(3.2)

Before stating our main result, we recall the following Schauder fixed point theorem.

Theorem 3.1. [14] Let C be a non-empty, bounded, closed and convex subset of a Banach
space E and T is a continuous operator from C into itself. If T(C) is relatively compact, then T
has a fixed point.

Equation (3.1) will be studied under the following assumptions:

½ðiÞ� f ∈CðI 3Rn−1;RÞ.
[(ii)] There exists a function a∈CðI ;RþÞ and constants bk ∈Rþðk ¼ 0; . . . ; n− 2Þ such
that

f ðs; u0; u1; . . . ; un−2Þj j≤ aðsÞ þ
Xn−2

k¼0
bkjukj

Under the assumptions (i) and (ii), we will make use of Schauder fixed point theorem to prove
the following main result:

Theorem 3.2. If the hypotheses (i) and (ii) hold, and if

r
Xn−2

i¼0

����
Z 1

0

jvðiÞ1 Gðt; sÞjds
����
∞

< 1

such that r 5 Max{b0, . . ., bn�2}.

Then, the integro-differential Equation (3.1) has a solution in Cn−2ðI ;RÞ.
Proof. Solving Equation (3.1) is equivalent to finding a fixed point of the operatorA defined
in the space E ¼ Cn−2ðI ;RÞ by the following expression:

AxðtÞ ¼
Z 1

0

Gðt; sÞf �s; x; x0; . . . ; xðn−2Þ�ds:
It is clear that the operator A is well defined from E into itself.

Moreover for all x ∈ E, t ∈ I and i 5 0, . . ., n � 2, we have

ðAxÞðiÞðtÞ ¼
Z 1

0

v
ðiÞ
1 Gðt; sÞf �s; x; x0; . . . ; xðn−2Þ�ds:

The proof is split into three steps.

Step I. There exists α > 0 such that A transforms C 5 {x ∈ E, kxk ≤ α} into itself. It is
clear that C is non-empty, bounded, closed and convex subset of E.
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Moreover, for all x ∈ C, t ∈ I and i 5 0, . . . n � 2, we have

jðAxÞðiÞðtÞj ¼
Z1
0

v
ðiÞ
1 Gðt; sÞf �s; x; x0; . . . ; xðn−2Þ�ds
















≤

Z1
0

jvðiÞ1 Gðt; sÞj aðsÞ þ
Xn−2
k¼0

bkjxðkÞðsÞj
 !

ds

≤ kak
∞
þ
Xn−2
k¼0

bkkxðkÞk∞
 !Z1

0

jvðiÞ1 Gðt; sÞjds:

(3.3)

Hence, for r 5 Max{b0, . . ., bn�2}, we obtain

Axk k ¼
Xn−2

i¼0
kAðiÞxk

∞

≤
��ak

∞
þ rα

� �Xn−2

i¼0

��� R 1

0
v
ðiÞ
1 Gðt; sÞ ds

���
∞








We deduce that, A transforms C into itself if

��ak
∞
þ rα

� �Xn−2

i¼0

����
Z 1

0

jvðiÞ1 Gðt; sÞjds
����
∞

≤α:

which implies, under the condition of Theorem (3.2), that

����ak∞Pn−2
i¼0

���� R 1

0





vðiÞ1 Gðt; sÞ




ds
����
∞

1� r
Pn−2

i¼0

���� R 1

0





vðiÞ1 Gðt; sÞ




ds
����
∞

≤α:

Then, A transforms C into itself for

α ¼

����ak∞Pn−2
i¼0

���� R 1

0





vðiÞ1 Gðt; sÞ




ds
����
∞

1� r
Pn−2

i¼0

���� R 1

0





vðiÞ1 Gðt; sÞ




ds
����
∞

:

Step 2: The operator A is continuous.

Let (xm) ∈ C be a convergence sequence to x ∈ C, which implies that ðxðiÞm Þ converges to x(i) in
the space C(I, [ � α, α]) for all i 5 0, . . ., n � 2.
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Since f is uniformly continuous on the compact set I 3 ½−α; α�3 � � � 3 ½−α; α�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}n−1 times

,

then the sequence ðf ðs; xm; x0m; . . . ; xðn−2Þm ÞÞ converges to f(s, x, x0, . . ., x(n�2)) in CðI ;RÞ.
It follows that

kAxm�Axk:≤kf �s;xm;x0m; . . . ;xn−2m

�� f
�
s;x;x0; . . . ;xn−2

�k
∞

Xn−2

i¼0
k
Z 1

0

v
ðiÞ
1 Gðt;sÞdsk

∞
:

which implies that (Axm) converges to Ax , and the operator A is continuous.

Step 3: A(C) is relatively compact; it is clear that A(C) is equi-bounded.

Now, to show that A(C) is equi-continuous, take t1 and t2 in I.
Then, for all i 5 0, . . . n � 3, there exists ξi between t1 and t2 such that

v
ðiÞ
1 Gðt2; sÞ � v

ðiÞ
1 Gðt1; sÞ ¼ ðt2 � t1Þvðiþ1Þ

1 Gðξi; sÞ:
Hence, for all i 5 0, . . . n � 3,

jAxðiÞðt2Þ � AxðiÞðt1Þj ¼
Z 1

0

f
�
s; x; x0; . . . ; xðn−2Þ

��
v
ðiÞ
1 Gðt2; sÞ � v

ðiÞ
1 Gðt1; sÞ

	
ds












≤

Z 1

0

jf �s; x; x0; . . . ; xðn−2Þ�vðiþ1Þ
1 Gðξi; sÞðt2 � t1Þjds

≤jt2 � t1j
��ak

∞
þ rα

� � Z 1

0







vðiþ1Þ
1 Gðt; sÞ







ds
������

������
∞

(3.4)

Now, let « > 0. We note λ ¼ max
0≤i≤n−3

R 1
0






vðiþ1Þ
1 Gðt; sÞ






ds
�����

�����
∞

.

Then from (3.4), if jt2 − t1j≤ δ1 ¼ ε
1þ kak∞þrαð Þλ, we have for all i 5 0, . . ., n � 3,

jAxðiÞðt2Þ � AxðiÞðt1Þj≤ ε

On the other hand, since the function g(t, s) is uniformly continuous on I 3 I,
there exists δ2 > 0 such that if jt2 � t1j ≤ δ2, then for all s ∈ I

jgðt2; sÞ � gðt1; sÞj < ε
1þ ��ak

∞
þ rα

:

which implies, for i 5 n � 2, that

jðAxÞðn−2Þxðt2Þ � ðAxÞðn−2Þxðt1Þj ¼ j
Z 1

0

f
�
s; x; x0; . . . ; xðn−2Þ

�ðgðt2; sÞ � gðt1; sÞÞdsj
≤
��ak

∞
þ rα

� �kgðt2; sÞ � gðt1; sÞk∞
≤ε:

Hence, the third step is completed by setting δ5 min (δ1, δ2). Therefore, the set A(C) is equi-
continuous.

The proof of Theorem 3.2 then follows from Schauder fixed point theorem. ,
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Example 3.3. Consider the following third-order boundary value problem:

uð3Þ þ λ ln
�
2þ u2 þ ðu0Þ2

	
¼ 0; t ∈ I ¼ ½0; 1�;

uð0Þ ¼ 0;
u0ð0Þ � uð2Þð0Þ ¼ 0;
u0ð1Þ þ uð2Þð1Þ ¼ 0:

8>>><
>>>: (3.5)

where λ is a positive number. Hence, by using the notations and the parameters of Theorem 3.2,

n ¼ 3; f ðt; u; u0Þ ¼ λ ln
�
2þ u2 þ ðu0Þ2

	
; α ¼ γ ¼ β ¼ δ ¼ 1;

vGðt; sÞ
vt

¼ gðt; sÞ;

where,

gðt; sÞ ¼ 1

3

ð1þ sÞ½1þ ð1� tÞ�; 0≤ s≤ t;
ð1þ tÞ½1þ ð1� sÞ�; t ≤ s≤ 1:

�

which implies that
R 1

0
jgðt; sÞjds ¼ 1

2
ð1− t þ t2Þ and k R 1

0
jgðt; sÞjdsk ¼ 5

8
.

On the other hand, we have

Gðt; sÞ ¼
Z t

0

gðr; sÞdr ¼ 1

3

ð1þ sÞ 2t � t2

2

� 

; 0≤ s≤ t;

ð2� sÞ t þ t2

2

� 

; t ≤ s≤ 1:

8>>><
>>>:

which implies that
R 1

0
jGðt; sÞjds ¼ 1

4
ð2t þ t2Þ and k R 1

0
jGðt; sÞjdsk ¼ 3

4
.

It is easy to see that jf(s, u0, u1)j ≤ λ ln(2) þ λju0j þ λju1j.
Hence, the conditions (i) and (ii) are fulfilled with a(s) 5 λ ln(2), b0 5 b1 5 λ.
Therefore, the inequality in Theorem 3.2 takes the form

λ
5

8
þ 1

3

� �
< 15λ <

8

11
:

Then by Theorem 3.2, we conclude that the third-order boundary value problem (3.5) has a
solution u∈C3ðI ;RÞ if λ < 8

11.
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