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Abstract

In this paper, we study a Cauchy-type problem for Hilfer fractional integrodifferential equations with boundary
conditions. The existence of solutions for the given problem is proved by applying measure of noncompactness
technique in an abstract weighted space. Moreover, we use generalized Gronwall inequality with singularity to
establish continuous dependence and uniqueness of eapproximate solutions.
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1. Introduction

Fractional calculus has emerged as a powerful tool to study complex phenomena in numerous
scientific and engineering disciplines such as viscoelasticity, fluid mechanics, physics and
heat conduction in materials with memory. For examples and applications, see [2,14,17-21]
and references cited therein. Many authors focused on Riemann-Liouville and Caputo type
derivatives in investigating fractional differential equations. In [7], Hilfer introduced a new
concept of generalized Riemann—Liouville derivative (Hilfer derivative) of order aand type f.
This definition facilitated dynamic modeling of non-equilibrium processes based on
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interpolation with respect to parameter of the Riemann-Liouville and Caputo type operators;
for instance, see [1,4,6,8,10,11].
Furati et al. [6] established the existence and uniqueness of solutions for the problem:

DAyt =f(ty@),t €] = (a,0,0 <a<1,0<p<1,
Ialf’y(aﬂ =w, asy=a+p—oap,

by applying Banach fixed point theorem in weighted space Ci_,[/,R]. Abbas et al. [1]
discussed the above problem by using Kuratowski measure of noncompactness.

Motivated by the works [1,6], we will study a more general problem of Hilfer fractional
integrodifferential equations with boundary conditions given by

{Dz;ﬂy(f) =f(t.y(@), (Y)H),te] = (a,0],0 <a <1,0<p<1,

11
L7 uy(a) +oy(07) =w, a<y=a+p—ap,
where DZ;" is the left-sided Hilfer fractional derivative of order a and type p,
f:J XX XX—X, Xis an abstract Banach space, #,v,weR,u +v#0, and S is a linear
integral operator defined by (Sy)(¢) = f;k(t, s)y(s)ds with ¢ = max{ f;k(ts)ds ((Ls)e
JXJy ke X R) . s
This article is constructed as follows: In Section 2, we recall some preliminaries. Section 3
contains the existence result obtained by using measure of noncompactness and Monch fixed
point theorem. We discuss the eapproximate solution of Hilfer fractional integrodifferential
equations in Section 4.

2. Preliminaries
In this section, we present some necessary definitions, notations and preliminaries, which will
be used throughout this work.

For —co < a < b < o0, let C[/, X] denote the space of all continuous functions on / into X
endowed with supremum norm ||x||. := sup{||x()|| : £ € J}. Define by G, [J, X] = {f (%) :
(a,b] - X|(x —a)""f(x) € C[J, X]} the weighted space of the abstract continuous functions.
Obviously, G-, [/, X] is a Banach space equipped with the norm |[f[l¢, = [|(x~ @) @,
and O [/, X] ={f € CYJ,X] : f € G, |J, X} is the Banach space endowed with the
norm

n—1

Wl =D Il + 1 @llg,_, m e,

=0
where, C{_, := Ci_,
Definition 2.1 (See [13]). The left-sided Riemann-Liouville fractional integral of order
a > 0of function f : [a, ) — R is defined by
1

)0 = / (= (5)ds, £ > a,

where ¢ € R and I is the Gamma function.

Definition 2.2 (See [13]). The left-sided Riemann-Liouville fractional derivative of order
a € (n—1,n] of function f : [a, ) — R, is defined by



000 = s () [ €70 > a

I'n—a)

where 7 = [a] + 1, [a] denotes the integer part of .

Remark 2.1. If f is an abstract function with values in X, then the integrals appearing in
Definitions 2.1 and 2.2 are taken in Bochner’s sense.

Definition 2.3 (See [7]). The left-sided Hilfer fractional derivative of order 0 < a < 1and
type 0 < <1, of function f(¢) is defined by

00 = (1 (1) ) o
where D := 4.
Remark 2.2 (See [7]). From Definition 2.3, we observe that:
(i) the operator DZ;/} can be written as
Dyl = IODL = ID, y = a+ p— ap;

(i) The Hilfer fractional derivative can be regarded as an interpolator between the
Riemann-Liouville derivative (8 = 0) and Caputo derivative (f = 1) as

Db DIV =Dt if p=0;
at ](l—oz)D:CDZz+7 if p=1.

In the forthcoming analysis, we need the spaces:
C;l;ﬁ[/7X} = {fE Cl—yU>X]7DZ;ﬂf€ C1—7U>X]}7

4

and
C_U.X|={feC,lU XD feC,l,X]}.

Since D:/f = 12 Dr £, it is obvious that C/_ [J, X]  C{“/[], X].
Now, we state some known results related to our work.
Lemma 2.1 (See [5]). Let p > 0and a > 0. Then

[]; (t _ a)ﬂ—l] (x) _ F(;(i)a)(x _ a)ﬂ+a—1

and
D2 (t—a)](x) =0, 0<a<l.

Lemma 2.2 (See [5)). If a > 0 and p > 0, and f € L'(J) for t € [a,b], then the following
Dproperties hold:

ILL ) (O = (IE7F) (b and (DI f) () = (D)

In particular, if f € C, [, X] or f € C[], X], then the above properties hold for each t € (a, b] or
t € [a, ] respectively.
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Lemma 2.3 (See [5)). If 0 < a < 1,0<y < land that f € C,[], X], [;7* f € C}[], X], then

(L) (a)

) (t—a)", Vie].

I DL f() = £(B) —

Lemma 2.4 (See [6)). If0<y < 1land f €C,[],X], then
(I f) (@) = B[z f(5) =0, 0<y<a.

Lemma 2.5 (See [6). Leta >0, p > Oand y = a+ p—ap. If f €C{_[J, X, then
LD f =I5 D F. DI f = DOf.

Lemma 2.6 (See [6]). Let f € L}(]) and Df‘u_”) f e L\(]) exists, then
D[l,ﬂla f _ [ﬂfl_@Dﬁf_“)f.

at “at

Lemma 2.7 (Theorem 23, [6]). Let f : ] X R — R be a function such that f € Ci_,[J, R] for
anyye C,[[,R]. Thenye Cy_y [/, R] s a solution of the initial value problem:

Dely(t) = f(t,y(t),te] = (a,0],0 <a < 1,0<p<1,
I7y(@) =y, a<y=a+p—ap,

if and only if y satisfies the following Volterra integral equation:

3(0) = st =ay™ + % [ = stnas

Next we obtain the integral solution of the problem (1.1) by using Lemma 2.7.

Lemma 2.8. Let f:J]XXXX—>X be a function such that feC_,[J,X]| for any
veC,l/,X] Thenye C{_y[/,X] is a solution of the problem (1.1) if and only if v satisfies
the following integral equation
() = w (t—a)™ v (t—a)™ 1
YW =UT0 TG ute I(y) Id—y+a)

b
x / (b — $)7f(5.3(5), ()($))ds 1)

e [ (= 9 (5.9(6), (9)(5))ds.

I'a
Proof. In view of Lemma 2.7, the solution of (1.1) can be written as

y(tb%(t—ay‘w% [ =97 050, )0 22

Applying I ;I 7 on both sides of (2.2) and taking the limit  — b=, we obtain

b
10 =) + =gy [ =9 s (e @



In a similar manner, we find that

S S £ 1 b a-y
L) = {960, ()0
u 2.4)
b
il [ -9 e @0}
Submitting (2.4) into (2.2), we obtain
_ o\l b
T el SRR/ CXCIEIY:
" ﬁ [ =56 )60
ow (- a)y™ v (t—a)" 1
Tu+v I(y) u4v I'(y) Tl—y+a)
b
X [ (b= 57 (5,509 ()(6))ds
" ﬁ JRED ORI
Conversely, applying ];I ” on both sides of (2.1) and using Lemmas 2.1 and 2.2, we get
b
0 = s e T [ 0 ). (9)6)ds
+ IO (8,9 (0), ()(2)). ©5)

Next, taking the limit # — a* of (2.5) and using Lemma 2.4, with 1—y < 1-4(1—a), we
obtain

b
) = e e [ 0 e (90 29

Now, taking the limit ¢ — b~ of (2.5), we get

b
L) = e T —ly T a) / (b~ 5" (s.3(5), (9)(s))ds

+ L7 (0,5(0), (9)(D)). @2.7)
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AJMS From (2.6) and (2.7), we find that

.12 173" + o T(0)
1 b
- uu—:/-vv - ul:z-)v rl-—y+a / (b= 5)""(5.5(5), (SY)(s))ds
112 o P 1

b
+u+v_u+vf(lfy+o:)/a( $)S(5,5(5), (Sy)(s))ds.

ol N (B, (0), () ()

W+ 1) o) 1
u+v  utv 1,7 (0,5(0), () (D))

+ oL, " (0,5(0), (SY)(B))

:1,{}7

which shows that the boundary condition 17 [uy(a*) + vy(b~)] = wis satisfied.

Next, applying D7, on both sides of (2.1) and using Lemmas 2.1 and 2.5, we have

Dy.y(t) = DIETOF (1, 3(8), () (8))-

Since yeC’ LI/, X] and by definition of C{_ [/, X], we have Dy € Ci— y[[ X)], therefore,
Dﬁ(1 Vf = DI LA~ "feC1 . X For feC,[],X], 1tlsc1eartha‘[l_ﬂ1 Vel X

Hence f and ; pl-a f satisfy the hypothesis of Lemma 2.3.
Now, applying If.(l_”> on both sides of (2.8), and using Lemma 2.3, we get

1-p(1-a)
DEAS(0) =500, (9)(0) - oL LN gy,

By Lemma 24, we have I'7"""f(a,v(a), (Sy)(a)) = 0. Therefore, we have Dy (t) =

F(), (Sy)(t )) This completes the proof. O

Next, we recall definition of noncompactness measure of Hausdorff ¥ (- ) on each bounded

subset £ of Banach space X defined by

() =inf{r > 0,02 can be covered by finite number of balls with radii 7}.

Lemma 2.9 (/3)). For all nonempty subsets A,BCX, the Hausdorff measure of

noncompactness () satisfies the following properties:

(1) Ais precompact if and only if ¥ (A) = 0;

@) ¥(A) =¥A) = ¥(comwA), where Aand conv A denote the closure and convex hull of

A respectively;



3) ¥(A)<¥(B)whenACB;

4 YA+B)<V(A)+¥YB),whereA+B={a+bac A be B};
(5) Y(AuB)<max{¥(A4),¥B)};

6) Y(1A) = |A|P(A) for any LeR;

(7) P{x}UA)<P(A) forany xeX.

~

Lemma 2.10 (/3)). If BC C(|a,b],X) is bounded and equicontinuous, then ¥ (B(t))
is continuous for te€la,b] and ¥(B)=sup{¥(B()),t€[a,b]}, where B(t) =
{x(¢);x eB}CX

Lemma 2.11 (/16)). If {u},. is a sequence of Bochner integrable functions from J into X

with||u, (t)|| < u(t) for albmost all t €] and every n>1, where u € L'(J, R), then the function
(1) = ¥ ({un(t) : n>1}) belongs to L*(J, R) with

av({ /0[ o (s)ds nzl}) 52/01 ¥ (s)ds.

In order to prove the existence of solutions for our problem with lesser number of constraints,
we will introduce another type of measure of noncompactness as follows.
Let @ denote the measure of noncompactness in the Banach space C[/, X| defined by

®(2) = max (§(F), mod.(E)), (2.9

EeA(R)

for all bounded subsets £2 of C[J, X], where A(£2) is the set of countable subsets of £, §is
the real measure of noncompactness given by

8(E) = sup e M¥(E(t)),

te(0,b]

with E(¢) = {x(¢) : x€E},t €], L is a suitably chosen constant and mod,(E) is the
modulus of equicontinuity of the function set £ defined as

mod,(E) = limsup max [|x(f) — x(t)]|

-0 g Ello—t1]<6

Observe that @ is well defined [9] (ie., £y € A(£2) which attends the maximum in (2.9)) and is
nonsingular, monotone and regular measure of noncompactness.

Lemma 2.12 (Monch fixed point theovem, [15]). Let D be a closed convex subset of a Banach
space X with 0 € D. Suppose that F : D — X is a continuous map satisfying the Monch’s
condition (if MC Dis countable and M C conv({0}U F(M)), then M is compact), then F has a
fixed point in D.
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3. Existence of solutions
Let us begin this section by introducing the hypotheses needed to prove the existence of
solutions for the problem at hand.

(H1) The function f : J X X X X —» X satisfies (i) f(-,x,y) : /] > X is measurable for all
x,y€Xand (i) f(¢, -, ) : X X X - X is continuous for aet € J.

(H2) There exists a constant N > 0 such that

(.2, )1 < NA+¢lylD),

for each t €/ and all y e X.

(H3) There exist constants #11, 72 > 0 such that

Pt x,9) < m¥(x) +m¥ (),

for bounded sets x,yC X, aete€ J.
Now, we are ready to present the existence result for the problem (1.1), which is based on
Monch fixed point theorem.

Theorem 3.1. Suppose that f : ] X X X X — X is such that f (-, y(+),S(+)) € Cfg_”) I/, X]
Sor any y € Ci_,|J, X] and satisfies the hypotheses (H1)-(H3). Then the Hilfer problem (1.1) has
at least one solution in C{_ [J, X] C Cf”_f [/, X], provided that
1 NG a N¢ a
Q= ) s o] T y+a)\b a)'B(y,a—y+1) +F(a)(b a)*B(y,a) < 1.
Proof. Introduce the operator @ : Ci_, [/, X] — G, [/, X] defined by
w (t—a)” v (t—a)” 1
t) = —
D)= 1) “uve T4) -7+

b
X / (b — $)7f(5.3(5), ()(s))ds (1)

+ﬁ / (1 — 8 (5.5(5), (S)(5))ds.

Notice that the solutions of problem (1.1) are the fixed points of the operator . Define a
bounded closed convex set B, := {y € G, [/, X] : ||y||cl_7 <rtetwithr > 2 (e <1)
and

1w NOo-a*"" 1 | N@p-a)"

S I(y) |u+o| Ta+1) I'y)lut+o| T2—y+a)’

In order to satisfy the hypotheses of the Monch fixed point theorem, we split the proof into
four steps.

Step 1. The operator @ maps the set B, into itself.



By the assumption (H2), we have
(@)t —a)|

1 w 1 v 1 b ey
N s i | 6. )0

t—-a™ " e 1w 1 o 1
g [ s @008 < B i ra e

(t—a)'™

I'(a)

b t
x [ 0= 91500 () o) as + [ =9 17509 (95D s

1wl 1 1 b
ST ek T el A=y, @ 9N A
(l‘*d)ly t B e |M/|
o [ =N Ly <
1 ol N b ay 1 o N b ay
RO e Ty T O Ry e iy [, @bl
P g M [ gl
Lol 1 bl N g
F()|u+v| I'y)lu+v|rl—y+a) (a—y+1)
1 ol N¢g ’ wrgo N(t-a)' (t—a)
e T T / (b =" (s =) ol ds 4
Nl 1wl 1l Np-a
a9 e S 1 e e e
1 N¢r N —a)*" L Ner

=t —a)B(y,a)

T o Ta—y 1o W Bra—r+ D+ = =41

1w +N(bfa)"’”1 1 | Np-a* "
ST jutv] " Ta+1l) "TQ)ju+o TC—y+a)

1 |U‘ N( a NC a
*r e T T OBy B

(@)
where we used the fact

[ = wnass ([ -9 ar sl
— (- 0" Blr,0) g,

In consequence, we get ||Qy|\CH <w+ or<r, thatis, @B, CB,. Thus Q: B, — B,.

Step 2. The operator  is continuous.

Suppose that {y, } is a sequence such that y, — yin B, as n — 0. Since f satisfies (H1), for each

te], we get
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26.1/2 (@) (1) — (@)t — )|

o1 LR /”(bs)a—qy(s (), (59)(5) = £(5.5(5). () (5)) s
ST utd TA—r+a) " J, S o
116 L ;(‘2) / (£ = )" (5, 90(5), (S9)(5)) — £(5,3(5), (S)(s)) Il ds

1l (Gb-aBra-y+1)
“I(y) |u+v) I'l—-y+a)

XALFC2m ()5 (S0 () = F(50C) () (D),

(t—a)"
I'(a)

+ B, )l (30(); (9) () =F(00) (9D, -

By (H1) and using the Lebesgue dominated convergence theorem, we have
[[(Qyn — )ll¢,, = 0asn— oo,

which implies that the operator € is continuous on B,.
Step 3. The operator @ is equicontinuous.

Forany a < f; < t» < band y € B,, we get

[(t2 = @) 7 (@)(t2) — (1 — @) (Qy) (&)

()™ / ) (t2 = )" (5,5(5), (S9)(s))ds

<1
“1(a)

~(h—a) / (= ) (5.9(5), (9)(8))ds

e,
* T

(to— )™ / ® (s — ay s

_(h —a)" / " (s — ) s

< |l;|(|2), B(y,a)||(l, — a)' 7 (= @) = (b — @) 7 (b — @)

e,
I'(a)

< B(y,a)||(tz —a)* — (h — a)"|,

which tends to zero as f; — #, independent of y € B,. Thus we conclude that Q(B,) is
equicontinuous, that is, mod (Q(B,)) = 0.



Step 4. The Monch condition is satisfied.
Suppose that D C B, is a countable set and D C conv({0} U Q(D)). In order to show that D is

Hilfer
fractional

precompact, it is enough to obtain that @(D) = (0,0). Since @(Q(D)) is maximum, let mntegrodifferential

{xn};e1 CQ(D) be a countable set attaining its maximum. Then, there exists a set
{In}q €D such that x, = (Qy,)(¢) forallt e/, n>1
Now, using (H3) together with Lemmas 2.9-2.11, we obtain

¥({xhl) = Y {(Qn)(0O}%5)

< 2| (t—a)" 1
Tlutol Iy) Il-y+a)

b
X / (b= )W (75, ()}, (S() 1)) )ds

i [ = N (ST ) s

v (t—a) 1
Tlu+v I'(y) I'l—-y+a

S x / (b= 9 (¥ ({9,(5)}50) + Mo (S()}2)) ) ds

b2 [ o)+ (ST

2| (t—a)™ 1 b y ©
S e T Iy w09 s 0))

+ 2moCsup ¥ ({9 ()} 1) ds+ / (t—s)" m1 sup ¥ ({yu(t)}7,)

telab] tela.b]

. ol (t-ayt 1 / s
2L (L) < L T e, €Y

X ¢ (m sup ¥ (D)) + 2maL sup ¥ ({(1))3)) s

telab]

2 _
+— / (t =)™ X e (mysup e ™ ({3, () }y) + 2mal sup e ¥ ({3 (1)} ) )ds
L(a) J, telab) telad)

2] (t—a)y ()
Tlu+v] I'y) IT'l—y+a

b
) / (b — )" e (my 4 2ma)ds

+% / (t = )" (my + 2mod)ds

2lo] (t—a) 1 b -
SL”Jrﬂ r(y) F(l—y+a)/a (b— )" (my + 2myC)ds

2 ' a-1 Ls -
+m/a (t—s5)* ek (M1+2mZC)dS]6({yn}n:1).
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Hence

§({xati)
B N A S A
<o el T iy J, O

+f%5}£tu_sf*é%ml+2mﬁ%k‘ﬂi%}iﬂ'

Fixing a suitable constant 0 < L' < 1 given by

2] (t—a)" 1

L = sup e
b lu+v| T'y) T'l—y+a)

telab)

b
x / (b — 5)°7 ¢ (my + 2msl)ds

2 ! a-1 [s
+@/a (t =) (my + 2mal)ds |

we get 8({x,}5,) <L'8({3, ). Thus
8({m}y) <8(D) <8(comv({0}UQD))) = 5({x,}72,) SL'3({a ),
which implies that 6({y,},-,) = 0and hence 6({x,,}, ;) = 0.

Now, according to the Step 3, we have found an equicontinuous set {x,},7; on /. Hence
D(D) <P(conv({0} UR(D))) < P(Q(D)), where &(Q(D)) = ®({xx}ie) = (0,0). Therefore, D
is precompact. Hence, by Lemma 2.12, there is a fixed point y of operator €, which is a solution
of the problem (1.1) in G, [/, X].

Next, we show that such a solution is indeed in C7 o [/, X]. By applying I’ on both sides of
(2.1), we get

D2y(t) = DIOF (8, 3(8), (9)(1)).
Since £ (£, 3(t), ()(t)) € (L[], X), it follows by definition of the space C;'>*'[/, X] that
D}.y(t) € G|/, X], which implies thatye C{_ [/, X]. [

4. e — Approximate solution

Definition 4.1. A functionze C] = [/, X] satisfying the Hilfer fractional integrodifferential
inequality

[D2(t) — f(t,2(0), (S2)(8)|| < e, teE],
and

I uz(a*) +vz(b7)] =,

is called an € —approximate solutions of Hilfer fractional integrodifferential equation (1.1).



Lemma 4.1 (See [22]). For > 0, let v(t) be a nonnegative function locally integrable on Hilfer
0<t<T(someT< + oo and g(t) be a nonnegative, nondecreasing continuous function fractional
defined on 0 < t < Twithg(t) <M (constant) and u(t) be a nonnegative and locally integrable integrodifferential
Sfunction on 0 < t < T such that

u(t) <v(t) +g(t) / t (t— sV u(s)ds,0 < t < T.

0
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Then

iw(t - s)"’”v(s)} ds,0<t<T.

Theorem 4.1. Suppose that the function f : ] X X X X — X satisfies the condition:
f (8,31, 21) = f (£, 32, %) || <mallyn — yol| + m2]|21 — %2]|,
for each t€ ] and all yv,y, x1, %, €X, where nm,ny >0 are constants. Let z; € C_,[], X],

i1 =1,2 be an e —approximate solution of the following Hilfer fractional integrodifferential
equation

D¥lzi(t) = f(t, (1), (Sz)(1)), te],0 < a < 1,0< <1, @)
I uzi(a*) +vzi(b7)) =W, a<y = a+f—ap,i = 1,2. ’
Then
21 — 2ol <Z7
(b a)”*l’+1 > 1 _ \@+ha—y+1
X (€1+€2)< +; On+ &) e a9 @2

|w—1_w_2‘ 1 - n 1 na
+ lu + v <W+Z(Ml+€n2) F(na+y)(b_a) )}’

n=1

where

z

- "U| (711+C7’l2) h N\ N

= 1 na
{FY —5—; ny + {ny)’ m(b— a) })#0

Proof. Let z;€ C7_ [[ X], (i =1,2) be an ¢ —approximate solution of problem (4.1). Then
[ [uzi(at) +vz,(b )] = w; and

|D&zi(t) — F(t,2:(8), (Sz0) (1))|| <eivi = 1,2, t€]. 44

4.3)
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26,1/2 I8 &> I8 || Dezi(t) — f(t2i(E), (Sa) (1)) || > |[z:(0) — ﬁv ¢ ;(6;);_
T i v ‘ ;(;))y— L (0,2(0), (S2)(0)) — I f(1,2:(1), (S2) (1))
120 which implies that
Farpt -9 Zz-U)*/jfv(t;(i)) Uiy(t;(?) L7 f (b 2i(), (S2)(0)

—I° f(ta(t), (S2) ()|, i = 1,2.

Using |x| — |y| < |x —y| < |x| + |y in the above inequality yields

;E(lat:i))(t o)
zzﬂﬂfuT;U;é¥4+uivU;g%zﬁﬂﬂha@i&ﬂwn7¢JMA@J&O@ﬂ
ety - 2 € ;(‘;);_1 v 2L *(‘;))y_lf,;':mf(b,szx (S2)(6) - It (S2)0) |
2 [a - 2 R 0,000, 50000

w (t—a)”

IS a0, (S)W)] - o)~ s

v (t—a)!
tute 1)

T (6.0, (S5 0) = .20, S 0)

(w1 —wy) (t—a)”"

2 ||(z(t) —2(1) - ut+v  T(y)
v (t — a)y—l a—y+1
b L (0, (01, (S2)(0) ~ £ .20, (S 0)

I (s (0. (Sa)(0) — F(talt). (sz?)(th

(w1 —05) (t—a)”
u+v I(y)

2 |[(a(t) = z(0)l -

v (tfa)y_l a—y+
o T e a0, (S2)6) ~f(b,20). (S2)0) )]H

— [V (8, 20(0), (Sz1) () — f (£ 22(8). (Sz2) ()]

In consequence, we have




121 (£) — 22(D)) Hilfer

_ fractional

(a+e), o, |@—m) (- a)y™ mtegrodifferential
“I(a+ 1)( —a+ I, Tv Iy equations
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—a)!
A I B .0), (52)0) - £0.20), (S )]

+ 121 (1), (Sa) (1) — f (2, 22(8), (Sz2) (1))

late), o fm - (t—a)”

_F(a—i-l)(t_a) + u+v ()
ol (=) || e
o 1) | [ (b,21(0), (S21) (8)) — £ (b, 22(b), (Sz2) (b))] H

+ 1 (21 (1), (Sa)(8) — F (2 22(8), (Sz2) ()]l

(a1 + €) « |- (t—a)"

“Tar '~ T W )

_ r-1 b
|u|j}|—‘ vl ‘ F((Jl’)) F((leygf)l) /a (0 — )" [lz1(s) — z2(s)lds

N (my 4 Cny) /l (t —$)""||z1(s) — z2(s) ||ds

I'(a)
(61 + €) o W =] (t—a)”
Tar Y T T T

ol (t—a) (m+Cn)

wte T Ta—yrnl @Bra-r+bla-zl,

) [ ) -2

Using Lemma 4.1 with u(f) = |[(21(t) = 22(1)) |, (1) = "5 and o(1) = (355} (1 @)+

=i (1=ay” (=) (s
i S e o res (b~ @) Bl a—y + 1) a-z , we get
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jwy —wa| (t —a)”
lu+ol  T(y)

()~ 2Ol <7 e~ ) +

ol (t—a)™" (m+iny) .
lu+v] I'(y) Ta—y+1)

+/at ,i: bt o) (t—s)mfl((ﬁ+€2)(s_a)a+|“71*wiz\ (s —a)

b—a)Bly,a—y+1)la -zl

-1

I(na) [a+1) lu+o|  T(y)
ol (s—a)" (m+{m) ,,
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(ate), o B-T(-—a” Pl (t-a”
“r(a+1) w+o]  T(y) Ju+o] T()
(1 + Ena) (e1 + €)

(b—a)Br.a—y+1la -2l +

Fla—y+1) Ia+1)

Z m +Eng) "It — a)”

n=1

w7 — 3]

I'(y)|u+ vl

lller — 22llc,, (1 + En)
rMu+ol Na—y+1)

> (m+ Cm) 'Lt — )

n=1

(b—a)"B(y,a—y+1)

iy —wy| (t —a)”"
lu+ol  I'(y)

(&1 + &)

X Yt —ay <
Z m + Cny) t—a)y™ CESY

(t—a)"+

ol (t—a)" (m+in)
lu+vl I'(y) TI'la—y+1)

(b—a)'B(y,a—y+1la -2l

(61 + 62) - n r(a + 1) (n+1)a
[(a+1) 4 Z (o +n) e Da sy
|w1 3| I'(y) pair | 10ll0 =22l
|u+v|; G na—i—y)( —9) + I'(y)|u+ 0|
(”1 + {ny)

IF'la—y+1)

a = F(V) na+y-1
b—a)By,a— 1) % t— r
(b—a)Br,a—vy+ n§:1 n + {ny)” (mHy)( a)

= (a +e) ( (t—ay 2":"; ny + {ny)’ m(t - a)("ﬂ)“)

|w_1— 7/02| t— d = na+y—1
+ nm +<n —a
lu + v I'(y Z 1+ )" (na-i—y)( )

[v] (%1+an)
lu+v| MNa—y+1)

(t*d)yl - 1 na+y—
x( o) +3 (m + )" (m+y)(t—a) 1).

n=1

(0—a)'B(y,a—y+1)]a 2l ,




Hence, for each f €/, we have

(t =) ll@(t) —20)ll

a—y+1 )
<(a+e) <( a) + nz ny + ny)’ m(t - a)(’Z“)"‘V“)
|1/1}1 M)2| . 1 na
T (ry ;”1+§ m(l‘—a) >
| (m 4 n)

(h— )% — —
|%+U| F(af}/+1)\b LZ) B(}/7a }/+1)||21 ZZ”C],r

1 - n 1 na
X <W+Z(M1 + {ny) m(tfa) )

n=1

Thus

lex — 22l

el )
st <(bf(aa)+'1> +2 oo ey 11>a—+ D “)Ma_m>

n=1

‘wl 1/{)2| L > 1 PR
T (r(y +Z (m1 + Cnp)" 4( +y)(b a) >

| (m +¢ng)
lu+o| MNa—y+1)

1 = n 1 na
X <m+;(7l1+§nz) m(b—d) ),

which, together with (4.3), yields

lar = z2lle, <Z7'[(e1 + &)
1-y

(b — a)aiﬁl > n 1 (n+1)a-y+1
% ( Tatl) D (m+{m) CES TSI (45)

n=1

|7/U1 Mle - 1 o\
+ | + v Fy +Z m o+ )’ F(na+y)(b 2) ' -

n=1

(b—a)Blr,a—y+ Dz 2l

Remark 4.1. If ¢, = eo = 0in the inequality (4.4), then z1, 25 are solutions of the problem
(1.1) in the space C{_y[], X] and the inequality (4.5) takes the form

1
_ <Z_1|w1 1/02| b— na
e = 2lle,, <275 —” +Y 0+ ) Fa 9" )

n=1

Hilfer
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which provides the information with respect to continuous dependence on the solution of the
problem (1.1). In addition, if wy = w, we get [|21—2||¢, L= 0, which proves the uniqueness of
solutions of the system (1.1).

Remark 4.2. One can note that our results for the Hilfer fractional integrodifferential
equation (1.1) correspond to initial boundary value problem for # = 1,v = 0, terminal
boundary value problem for # = 0,v = 1 and anti-periodic problem for u = 1,v = 1,w = 0.

Remark 4.3. If g =1, then Eq. (1.1) reduces to the Caputo fractional integrodifferential
equation with boundary conditions as in [12].
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