Search results

1 – 10 of 966
Article
Publication date: 13 November 2023

Maryam Mohseni and Davood Rostamy

The numerical methods are of great importance for approximating the solutions of a system of nonlinear singular ordinary differential equations. In this paper, the authors present…

Abstract

Purpose

The numerical methods are of great importance for approximating the solutions of a system of nonlinear singular ordinary differential equations. In this paper, the authors present the biorthogonal flatlet multiwavelet collocation method (BFMCM) as a numerical scheme for a class of system of Lane–Emden equations with initial or boundary or four-point boundary conditions.

Design/methodology/approach

The approach is involved in combining the biorthogonal flatlet multiwavelet (BFM) with the collocation method. The authors investigate the properties and procedure of the BFMCM for first time on this class of equations. By using the BFM and the collocation points, the method is constructed and it transforms the nonlinear differential equations problem into a system of nonlinear algebraic equations. The unknown coefficients of the assuming solution are determined by solving the obtained system. Additionally, convergence analysis and numerical stability of the suggested method are provided.

Findings

According to the attained results, the proposed BFMCM has more accurate results in comparison with results of other methods. The maximum absolute errors are calculated by using the BFMCM for comparison purposes provided.

Originality/value

The key desirable properties of BFMCM are its efficiency, simple applicability and minimizes errors. Therefore, the proposed method can be used to solve nonlinear problems or problems with singular points.

Details

Engineering Computations, vol. 40 no. 9/10
Type: Research Article
ISSN: 0264-4401

Keywords

Open Access
Article
Publication date: 14 October 2021

Sakhri Aicha and Ahcene Merad

This study describes the applicability of the a priori estimate method on a nonlocal nonlinear fractional differential equation for which the weak solution's existence and…

Abstract

Purpose

This study describes the applicability of the a priori estimate method on a nonlocal nonlinear fractional differential equation for which the weak solution's existence and uniqueness are proved. The authors divide the proof into two sections for the linear associated problem; the authors derive the a priori bound and demonstrate the operator range density that is generated. The authors solve the nonlinear problem by introducing an iterative process depending on the preceding results.

Design/methodology/approach

The functional analysis method is the a priori estimate method or energy inequality method.

Findings

The results show the efficiency of a priori estimate method in the case of time-fractional order differential equations with nonlocal conditions. Our results also illustrate the existence and uniqueness of the continuous dependence of solutions on fractional order differential equations with nonlocal conditions.

Research limitations/implications

The authors’ work can be considered a contribution to the development of the functional analysis method that is used to prove well-positioned problems with fractional order.

Originality/value

The authors confirm that this work is original and has not been published elsewhere, nor is it currently under consideration for publication elsewhere.

Details

Arab Journal of Mathematical Sciences, vol. 29 no. 2
Type: Research Article
ISSN: 1319-5166

Keywords

Article
Publication date: 31 July 2023

Safia Akram, Maria Athar, Khalid Saeed, Mir Yasir Umair and Taseer Muhammad

The purpose of this study, thermal radiation and viscous dissipation impacts on double diffusive convection on peristaltic transport of Williamson nanofluid due to induced…

Abstract

Purpose

The purpose of this study, thermal radiation and viscous dissipation impacts on double diffusive convection on peristaltic transport of Williamson nanofluid due to induced magnetic field in a tapered channel is examined. The study of propulsion system is on the rise in aerospace research. In spacecraft technology, the propulsion system uses high-temperature heat transmission governed through thermal radiation process. This study will help in assessment of chyme movement in the gastrointestinal tract and also in regulating the intensity of magnetic field of the blood flow during surgery.

Design/methodology/approach

The brief mathematical modelling, along with induced magnetic field, of Williamson nanofluid is given. The governing equations are reduced to dimensionless form by using appropriate transformations. Numerical technique is manipulated to solve the highly nonlinear differential equations. The roll of different variables is graphically analyzed in terms of concentration, temperature, volume fraction of nanoparticles, axial-induced magnetic field, magnetic force function, stream functions, pressure rise and pressure gradient.

Findings

The key finding from the analysis above can be summed up as follows: the temperature profile decreases and concentration profile increases due to the rising impact of thermal radiation. Brownian motion parameter has a reducing influence on nanoparticle concentration due to massive transfer of nanoparticles from a hot zone to a cool region, which causes a decrease in concentration profile· The pressure rise enhances due to rising values of thermophoresis and thermal Grashof number in retrograde pumping, free pumping and copumping region.

Originality/value

To the best of the authors’ knowledge, a study that integrates double-diffusion convection with thermal radiation, viscous dissipation and induced magnetic field on peristaltic flow of Williamson nanofluid with a channel that is asymmetric has not been carried out so far.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 14 December 2023

Marjan Sharifi, Majid Siavashi and Milad Hosseini

Present study aims to extend the lattice Boltzmann method (LBM) to simulate radiation in geometries with curved boundaries, as the first step to simulate radiation in complex…

Abstract

Purpose

Present study aims to extend the lattice Boltzmann method (LBM) to simulate radiation in geometries with curved boundaries, as the first step to simulate radiation in complex porous media. In recent years, researchers have increasingly explored the use of porous media to improve the heat transfer processes. The lattice Boltzmann method (LBM) is one of the most effective techniques for simulating heat transfer in such media. However, the application of the LBM to study radiation in complex geometries that contain curved boundaries, as found in many porous media, has been limited.

Design/methodology/approach

The numerical evaluation of the effect of the radiation-conduction parameter and extinction coefficient on temperature and incident radiation distributions demonstrates that the proposed LBM algorithm provides highly accurate results across all cases, compared to those found in the literature or those obtained using the finite volume method (FVM) with the discrete ordinates method (DOM) for radiative information.

Findings

For the case with a conduction-radiation parameter equal to 0.01, the maximum relative error is 1.9% in predicting temperature along vertical central line. The accuracy improves with an increase in the conduction-radiation parameter. Furthermore, the comparison between computational performances of two approaches reveals that the LBM-LBM approach performs significantly faster than the FVM-DOM solver.

Originality/value

The difficulty of radiative modeling in combined problems involving irregular boundaries has led to alternative approaches that generally increase the computational expense to obtain necessary radiative details. To address the limitations of existing methods, this study presents a new approach involving a coupled lattice Boltzmann and first-order blocked-off technique to efficiently model conductive-radiative heat transfer in complex geometries with participating media. This algorithm has been developed using the parallel lattice Boltzmann solver.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 21 June 2023

Noura Alsedais, Amal Al-Hanaya and Abdelraheem M. Aly

This paper aims to investigate magnetic impacts on bioconvection flow within a porous annulus between an outer cylinder and five inner cylinders. The annulus is filled by…

Abstract

Purpose

This paper aims to investigate magnetic impacts on bioconvection flow within a porous annulus between an outer cylinder and five inner cylinders. The annulus is filled by oxytactic microorganisms and nano-encapsulated phase change materials.

Design/methodology/approach

The modified ISPH method based on the time-fractional derivative is applied to solve the regulating equations in Lagrangian dimensionless forms. The pertinent factors are bioconvection Rayleigh number Rab (1–100), circular cylinder’s radius Rc (0.1–0.3), fractional time derivative α (0.95–1), Darcy parameter Da (10−5–10−2), nanoparticle parameter ϕ (0–0.1), Hartmann number Ha (0–50), Lewis number Le (1–20), Peclet number Pe (0.1–0.75), s (0.1–0.9), number of cylinders NCylinders (1–4), Rayleigh number Ra (103–106) and fusion temperature θf (0.005–0.9).

Findings

The simulations revealed that there is a strong enhancement in the velocity field according to an increase in Rab. The intensity and location of the phase zone change in response to changes in θf. The time-fractional derivative a acting on a nanofluid velocity and flow characteristics in an annulus. The number of embedded cylinders NCylinders is playing a significant role in the cooling processes and as NCylinders increases from 1 to 4, the velocity field’s maximum reduces by almost 33.3%.

Originality/value

The novelty of this study is examining the impacts of the magnetic field and the presence of several numbers of embedded cylinders on bioconvection flow within a porous annulus between an outer cylinder and five inner cylinders.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 27 April 2023

Jinliang Liu and Xincheng Su

The effects of carbon fiber reinforced polymer (CFRP) reinforcement form, adhesive type and pre-crack width on failure mode, shear capacity, deflection response, CFRP strain…

Abstract

Purpose

The effects of carbon fiber reinforced polymer (CFRP) reinforcement form, adhesive type and pre-crack width on failure mode, shear capacity, deflection response, CFRP strain response and crack patterns of strengthened specimens were investigated.

Design/methodology/approach

This paper presents a geopolymer adhesive that matches the performance requirements of CFRP adhesive, which is applied to pre-cracked beams reinforced with CFRP strips.

Findings

For specimens with varying structural properties, two failure modes, the CFRP-concrete interface substrate failure and the fracture failure of CFRP, are observed. Moreover, the shear capacity, ultimate deflection and bending stiffness of the U-shaped CFRP-strengthened beams are enhanced in comparison to the complete-wrapping CFRP-strengthened beams. With an increase in pre-crack width, the increase in shear capacity of RC beams shear-strengthened with CFRP strips is less than that of non-cracked beams, resulting in a limited influence on the stiffness of CFRP-strengthened beams. The comparison of experimental results showed that the proposed finite element model (FEM) effectively evaluated the mechanical characteristics of CFRP-strengthened RC beams.

Originality/value

Taking into consideration the reinforcement effect and the concept of environmental protection, the geopolymer adhesive reinforcement scheme is preferable to applying epoxy resin to the CFRP-strengthened RC beams.

Details

International Journal of Structural Integrity, vol. 14 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

Open Access
Article
Publication date: 27 November 2023

J.I. Ramos and Carmen María García López

The purpose of this paper is to analyze numerically the blowup in finite time of the solutions to a one-dimensional, bidirectional, nonlinear wave model equation for the…

232

Abstract

Purpose

The purpose of this paper is to analyze numerically the blowup in finite time of the solutions to a one-dimensional, bidirectional, nonlinear wave model equation for the propagation of small-amplitude waves in shallow water, as a function of the relaxation time, linear and nonlinear drift, power of the nonlinear advection flux, viscosity coefficient, viscous attenuation, and amplitude, smoothness and width of three types of initial conditions.

Design/methodology/approach

An implicit, first-order accurate in time, finite difference method valid for semipositive relaxation times has been used to solve the equation in a truncated domain for three different initial conditions, a first-order time derivative initially equal to zero and several constant wave speeds.

Findings

The numerical experiments show a very rapid transient from the initial conditions to the formation of a leading propagating wave, whose duration depends strongly on the shape, amplitude and width of the initial data as well as on the coefficients of the bidirectional equation. The blowup times for the triangular conditions have been found to be larger than those for the Gaussian ones, and the latter are larger than those for rectangular conditions, thus indicating that the blowup time decreases as the smoothness of the initial conditions decreases. The blowup time has also been found to decrease as the relaxation time, degree of nonlinearity, linear drift coefficient and amplitude of the initial conditions are increased, and as the width of the initial condition is decreased, but it increases as the viscosity coefficient is increased. No blowup has been observed for relaxation times smaller than one-hundredth, viscosity coefficients larger than ten-thousandths, quadratic and cubic nonlinearities, and initial Gaussian, triangular and rectangular conditions of unity amplitude.

Originality/value

The blowup of a one-dimensional, bidirectional equation that is a model for the propagation of waves in shallow water, longitudinal displacement in homogeneous viscoelastic bars, nerve conduction, nonlinear acoustics and heat transfer in very small devices and/or at very high transfer rates has been determined numerically as a function of the linear and nonlinear drift coefficients, power of the nonlinear drift, viscosity coefficient, viscous attenuation, and amplitude, smoothness and width of the initial conditions for nonzero relaxation times.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 9 August 2023

Yi Sui, Yi Wang and Xiang Yu

The dynamic response of the nuclear power plants (NPPs) with pile foundation reinforcement have not yet been systemically investigated in detail. Thus, there is an urgent need to…

Abstract

Purpose

The dynamic response of the nuclear power plants (NPPs) with pile foundation reinforcement have not yet been systemically investigated in detail. Thus, there is an urgent need to improve evaluation methods for nonlithological foundation reinforcements, as this issue is bound to become an unavoidable task.

Design/methodology/approach

A nonlinear seismic wave input method is adopted to consider both a nonlinear viscoelastic artificial boundary and the nonlinear properties of the overburden layer soil. Subsequently, the effects of certain vital parameters on the structural response are analyzed.

Findings

A suitable range for the size of the overburden foundation is suggested. Then, when piles are used to reinforce the overburden foundation, the peak frequencies in the floor response spectra (FRS) in the horizontal direction becomes higher (38%). Finally, the Poisson ratio of the foundation soil has a significant influence on the FRS peak frequency in the vertical direction (reduce 35%–48%).

Originality/value

The quantifiable results are performed to demonstrate the seismic responses with respect to key design parameters, including foundational dimensions, the Poisson Ratio of the soil and the depth of the foundation. The results can help guide the development of seismic safety requirements for NPPs.

Details

Engineering Computations, vol. 40 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 5 October 2023

Kaikai Shi, Hanan Lu, Xizhen Song, Tianyu Pan, Zhe Yang, Jian Zhang and Qiushi Li

In a boundary layer ingestion (BLI) propulsion system, the fan operates continuously under distorted inflow conditions, leading to an increment of aerodynamic loss and in turn…

Abstract

Purpose

In a boundary layer ingestion (BLI) propulsion system, the fan operates continuously under distorted inflow conditions, leading to an increment of aerodynamic loss and in turn impacting the potential fuel burn reduction of the aircraft. Usually, in the preliminary design stage of a BLI propulsion system, it is essential to assess the impact of fuselage boundary layer fluids on fan aerodynamic performances under various flight conditions. However, the hub region flow loss is one of the major loss sources in a fan and would greatly influence the fan performances. Moreover, the inflow distortion also results in a complex and highly nonlinear mapping relation between loss and local physical parameters. It will diminish the prediction accuracy of the commonly used low-fidelity computational approaches which often incorporate traditional physics-based loss models, reducing the reliability of these approaches in evaluating fan performances. Meanwhile, the high-fidelity full-annulus unsteady Reynolds-averaged Navier–Stokes (URANS) approach, even though it can give rather accurate loss predictions, is extremely time-consuming. This study aims to develop a fast and accurate hub loss prediction method for a BLI fan under distorted inflow conditions.

Design/methodology/approach

This paper develops a data-driven hub loss prediction method for a BLI fan under distorted inflows. To improve the prediction accuracy and applicability, physical understandings of hub flow features are integrated into the modeling process. Then, the key physical parameters related to flow loss are screened by conducting a sensitivity analysis of influencing parameters. Next, a quasi-steady assumption of flow is made to generate a training sample database, reducing the computational time by acquiring one single sample from the highly time-consuming full-annulus URANS approach to a cost-efficient single-blade-passage approach. Finally, a radial basis function neural network is used to establish a surrogate model that correlates the input parameters and the output loss.

Findings

The data-driven hub loss model shows higher prediction accuracy than the traditional physics-based loss models. It can accurately capture the circumferentially and radially nonuniform variation trends of the losses and the associated absolute magnitudes in a BLI fan under different blade load, inlet distortion intensity and rotating speed conditions. Compared with the high-fidelity full-annulus URANS results, the averaged relative prediction errors of the data-driven hub loss model are kept less than 10%.

Originality/value

The originality of this paper lies in developing a new method for predicting flow loss in a BLI fan rotor blade hub region. This method offers higher prediction accuracy than the traditional loss models and lower computational time cost than the full-annulus URANS approach, which could realize fast evaluations of fan aerodynamic performances and provide technical support for designing high-performance BLI fans.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 17 July 2023

Umer Saeed

The purpose of the present work is to introduce a wavelet method for the solution of linear and nonlinear psi-Caputo fractional initial and boundary value problem.

Abstract

Purpose

The purpose of the present work is to introduce a wavelet method for the solution of linear and nonlinear psi-Caputo fractional initial and boundary value problem.

Design/methodology/approach

The authors have introduced the new generalized operational matrices for the psi-CAS (Cosine and Sine) wavelets, and these matrices are successfully utilized for the solution of linear and nonlinear psi-Caputo fractional initial and boundary value problem. For the nonlinear problems, the authors merge the present method with the quasilinearization technique.

Findings

The authors have drived the orthogonality condition for the psi-CAS wavelets. The authors have derived and constructed the psi-CAS wavelets matrix, psi-CAS wavelets operational matrix of psi-fractional order integral and psi-CAS wavelets operational matrix of psi-fractional order integration for psi-fractional boundary value problem. These matrices are successfully utilized for the solutions of psi-Caputo fractional differential equations. The purpose of these operational matrices is to make the calculations faster. Furthermore, the authors have derived the convergence analysis of the method. The procedure of implementation for the proposed method is also given. For the accuracy and applicability of the method, the authors implemented the method on some linear and nonlinear psi-Caputo fractional initial and boundary value problems and compare the obtained results with exact solutions.

Originality/value

Since psi-Caputo fractional differential equation is a new and emerging field, many engineers can utilize the present technique for the numerical simulations of their linear/non-linear psi-Caputo fractional differential models. To the best of the authors’ knowledge, the present work has never been introduced and implemented for psi-Caputo fractional differential equations.

Details

Engineering Computations, vol. 40 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of 966