Search results

1 – 10 of 150
Article
Publication date: 14 June 2022

Sreenadh Sreedharamalle, Sumalatha Baina and Srinivas A.N.S.

This paper aims to investigate the flow of two-layered non-Newtonian fluids with different viscosities in an axisymmetric elastic tube.

Abstract

Purpose

This paper aims to investigate the flow of two-layered non-Newtonian fluids with different viscosities in an axisymmetric elastic tube.

Design/methodology/approach

A mathematical model was considered for this study to describe the flow characteristics of two-layered non- Newtonian Jeffrey fluids in an elastic tube. Because Jeffrey fluid model is a better model for the description of physiological fluid motion. Further, this model is a significant generalization of Newtonian fluid model. Analytical expressions for flux, stream functions, velocities and interface velocity have been derived in terms of elastic parameters, inlet, outlet and external pressures. The effects of various pertinent parameters on the flow behavior have been studied.

Findings

The volumetric flow rate was calculated by different models of Mazumdar (1992) and Rubinow and Keller (1972); from this it was found that the flux of Jeffrey fluid is more in the case of Rubinow and Keller model than Mazumdar. A comparative study is made between single-fluid and two-fluid models of Jeffrey fluid flows and it was observed that more flux and higher velocities were observed in the case of two-fluid model rather than single-fluid model. Furthermore, when both the Jeffrey parameter tends to zero and ratios of viscosities and radii are unity, the results in this study agree with those of Rubinow and Keller (1972).

Originality/value

To describe the fluid flow in an elastic tube with two-layered systems, the models and solutions developed here are very important. These results will be highly suitable in analyzing the rheological characteristics of blood flow in a small blood vessel because of their elastic nature.

Details

World Journal of Engineering, vol. 20 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 24 May 2022

Ahmed Benamor, Aissa Abidi-Saad, Ridha Mebrouk and Sarra Fatnassi

This study aims at investigating two-dimensional laminar flow of power-law fluids around three unconfined side-by-side cylinders.

Abstract

Purpose

This study aims at investigating two-dimensional laminar flow of power-law fluids around three unconfined side-by-side cylinders.

Design/methodology/approach

The numerical study is performed by solving the governing (continuity and momentum) equations using a finite volume-based code ANSYS Fluent. The numerical results have been presented for different combinations of the governing dimensionless parameters (dimensionless spacing, 1.2 = L = 4; Reynolds number, 0.1 = Re = 100; power-law index, 0.2 = n = 1.8). The dependence of the kinematic and macroscopic characteristics of the flow such as streamline patterns, distribution of the surface pressure coefficient, total drag coefficient with its components (pressure and friction) and total lift coefficient on these dimensionless parameters has been discussed in detail.

Findings

It is found that the separation of the flow and the apparition of the wake region accelerate as the dimensionless spacing decreases, the number of the cylinder increases and/or the fluid behavior moves from shear-thinning to Newtonian then to shear-thickening behavior. In addition, the distribution of the pressure coefficient on the surface of the cylinders presents a complex dependence on the fluid behavior index and Reynolds number when the dimensionless spacing between two adjacent cylinders is varied. At low Reynolds numbers, the drag coefficient of shear-thinning fluids is stronger than that of Newtonian fluids; this tendency decreases progressively with increasing of Re until a critical value; beyond the critical Re, the opposite trend is observed. The lift coefficient of the middle cylinder is null, whereas, the exterior cylinders experience opposite lift coefficients, which show a complex dependence on the dimensionless spacing, the Reynolds number and the power-law index.

Originality/value

The flow over bluff bodies is a practical engineering problem. In the literature, it can be seen that the previous studies on non-Newtonian fluids are limited to the flow over one or two cylinders (effect of an odd number of cylinders on each other). Besides that, the available results concerning the flow of Newtonian fluids over three cylinders are limited to the high Reynolds numbers region only. However, this work treats the flow of non-Newtonian power-law fluids past three circular cylinders in side-by-side arrangements under a wide range of Re. The outcome of the present study demonstrates that the augmentation of the geometry complexity to three cylinders (effect of pair surrounding cylinders on the surrounded ones in what concerns Von Karman Street phenomenon) causes a drastic change in the flow patterns and in the macroscopic characteristics. The present results may be used to predict the flow behavior around multiple side-by-side cylinders.

Details

World Journal of Engineering, vol. 20 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 4 June 2024

Ahmed Zeeshan, Zaheer Asghar and Amad ur Rehaman

The present work is devoted to investigating the sensitivity analysis of the electroosmotic peristaltic motion of non-Newtonian Casson fluid with the effect of the chemical…

Abstract

Purpose

The present work is devoted to investigating the sensitivity analysis of the electroosmotic peristaltic motion of non-Newtonian Casson fluid with the effect of the chemical reaction and magnetohydrodynamics through the porous medium. The main focus is on flow efficiency quantities such as pressure rise per wavelength, frictional forces on the upper wall and frictional forces on the lower wall. This initiative is to bridge the existing gap in the available literature.

Design/methodology/approach

The governing equations of the problem are mathematically formulated and subsequently simplified for sensitivity analysis under the assumptions of a long wavelength and a small Reynolds number. The simplified equations take the form of coupled nonlinear differential equations, which are solved using the built-in Matlab routine bvp4c. The response surface methodology and artificial neural networks are used to develop the empirical model for pressure rise per wavelength, frictional forces on the upper wall and frictional forces on the lower wall.

Findings

The empirical model demonstrates an excellent fit with a coefficient of determination reaching 100% for responses, frictional forces on the upper wall and frictional forces on the lower wall and 99.99% for response, for pressure rise per wavelength. It is revealed through the sensitivity analysis that pressure rise per wavelength, frictional forces on the upper wall and frictional forces on the lower wall are most sensitive to the permeability parameter at all levels.

Originality/value

The objective of this study is to use artificial neural networks simulation and analyze the sensitivity of electroosmotic peristaltic motion of non-Newtonian fluid with the effect of chemical reaction.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 14 March 2023

Florence Dami Ayegbusi, Emile Franc Doungmo Goufo and Patrick Tchepmo

The purpose of this study is to explore numerical scrutinization of micropolar and Walters-B non-Newtonian fluids motion under the influence of thermal radiation and chemical…

Abstract

Purpose

The purpose of this study is to explore numerical scrutinization of micropolar and Walters-B non-Newtonian fluids motion under the influence of thermal radiation and chemical reaction.

Design/methodology/approach

The two fluids micropolar and Walters-B liquid are considered to start flowing from the slot to the stretching sheet. A magnetic field of constant strength is imposed on their flow transversely. The problems on heat and mass transport are set up with thermal, chemical reaction, heat generation, etc. to form partial differential equations. These equations were simplified into a dimensionless form and solved using spectral homotopy analysis method (SHAM). SHAM uses the basic concept of both Chebyshev pseudospectral method and homotopy analysis method to obtain numerical computations of the problem.

Findings

The outcomes for encountered flow parameters for temperature, velocity and concentration are presented with the aid of figures. It is observed that both the velocity and angular velocity of micropolar and Walters-B and thermal boundary layers increase with increase in the thermal radiation parameter. The decrease in velocity and decrease in angular velocity occurred are a result of increase in chemical reaction. It is hoped that the present study will enhance the understanding of boundary layer flow of micropolar and Walters-B non-Newtonian fluid under the influences of thermal radiation, thermal conductivity and chemical reaction as applied in various engineering processes.

Originality/value

All results are presented graphically and all physical quantities are computed and tabulated.

Details

World Journal of Engineering, vol. 21 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 30 April 2024

Reima Daher Alsemiry, Rabea E. Abo Elkhair, Taghreed H. Alarabi, Sana Abdulkream Alharbi, Reem Allogmany and Essam M. Elsaid

Studying the shear stress and pressure resulting on the walls of blood vessels, especially during high-pressure cases, which may lead to the explosion or rupture of these vessels…

Abstract

Purpose

Studying the shear stress and pressure resulting on the walls of blood vessels, especially during high-pressure cases, which may lead to the explosion or rupture of these vessels, can also lead to the death of many patients. Therefore, it was necessary to try to control the shear and normal stresses on these veins through nanoparticles in the presence of some external forces, such as exposure to some electromagnetic shocks, to reduce the risk of high pressure and stress on those blood vessels. This study aims to examines the shear and normal stresses of electroosmotic-magnetized Sutterby Buongiorno’s nanofluid in a symmetric peristaltic channel with a moderate Reynolds number and curvature. The production of thermal radiation is also considered. Sutterby nanofluids equations of motion, energy equation, nanoparticles concentration, induced magnetic field and electric potential are calculated without approximation using small and long wavelengths with moderate Reynolds numbers.

Design/methodology/approach

The Adomian decomposition method solves the nonlinear partial differential equations with related boundary conditions. Graphs and tables show flow features and biophysical factors like shear and normal stresses.

Findings

This study found that when curvature and a moderate Reynolds number are present, the non-Newtonian Sutterby fluid raises shear stress across all domains due to velocity decay, resulting in high shear stress. Additionally, modest mobility increases shear stress across all channel domains. The Sutterby parameter causes fluid motion resistance, which results in low energy generation and a decrease in the temperature distribution.

Originality/value

Equations of motion, energy equation, nanoparticle concentration, induced magnetic field and electric potential for Sutterby nano-fluids are obtained without any approximation i.e. the authors take small and long wavelengths and also moderate Reynolds numbers.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 7 November 2023

Kashif Irshad, Amjad Ali Pasha, Mohammed K. Al Mesfer, Mohd Danish, Manoj Kumar Nayak, Ali Chamkha and Ahmed M. Galal

The entropy and thermal behavior analyses of non-Newtonian nanofluid double-diffusive natural convection inside complex domains may captivate a bunch of scholars’ attention…

Abstract

Purpose

The entropy and thermal behavior analyses of non-Newtonian nanofluid double-diffusive natural convection inside complex domains may captivate a bunch of scholars’ attention because of the potential utilizations that they possess in modern industries, for example, heat exchangers, solar energy collectors and cooling of electronic apparatuses. This study aims to investigate the second law and thermal behavior of non-Newtonian double-diffusive natural convection (DDNC) of Al2O3-H2O nanofluid within a C-shaped cavity emplacing two hot baffles and impacted by a magnetic field.

Design/methodology/approach

For the governing equations of the complicated and practical system with all considered parameters to be solved via a formidable numerical approach, the finite element method acts as an approach to achieving the desired solution. This method allows us to gain a detailed solution to the studied geometry.

Findings

This investigation has been executed for the considered parameters of range, such as power-law index, baffle length, Lewis number, buoyancy ratio, Hartmann number and Rayleigh number. The main results reveal that isothermal and concentration lines are significantly more distorted, indicating intensified concentration and temperature distributions because of the growth of baffle length (L). Nuave decreases by 8.4% and 0.8% while it enhances by 49.86% and 33.87%, respectively, because of growth in the L from 0.1 to 0.2 and 0.2 to 0.3.

Originality/value

Such a comprehensive study on the second law and thermal behavior of DDNC of Al2O3-H2O nanofluid within a C-shaped cavity emplacing two hot baffles and impacted by magnetic field has not yet been carried out.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 15 January 2024

F.D. Ayegbusi and A.S. Idowu

The purpose of this study is to investigate the effects of entropy generation of some embedded thermophysical properties on heat and mass transfer of pulsatile flow of…

Abstract

Purpose

The purpose of this study is to investigate the effects of entropy generation of some embedded thermophysical properties on heat and mass transfer of pulsatile flow of non-Newtonian nanofluid flows between two porous parallel plates in the presence of Lorentz force are taken into account in this research.

Design/methodology/approach

The governing partial differential equations (PDEs) were nondimensionalized using suitable nondimensional quantities to transform the PDEs into a system of coupled nonlinear PDEs. The resulting equations are solved using the spectral relaxation method due to the effectiveness and accuracy of the method. The obtained velocity and temperature profiles are used to compute the entropy generation rate and Bejan number. The influence of various flow parameters on the velocity, temperature, entropy generation rate and Bejan number are discussed graphically.

Findings

The results indicate that the energy losses can be minimized in the system by choosing appropriate values for pertinent parameters; when thermal conductivity is increasing, this leads to the depreciation of entropy generation, and while this increment in thermal conductivity appreciates the Bejan number, the Eckert number on entropy generation and Bejan number, the graph shows that each time of increase in Eckert will lead to rising of entropy generation while this increase shows a reduction in Bejan number. To shed more light, these results were further demonstrated graphically. The current research was very well supported by prior literature works.

Originality/value

All results are presented graphically, and the results in this article are anticipated to be helpful in the area of engineering.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 29 August 2023

Zaheer Abbas, Sabeeh Khaliq, Sana Usman and Muhammad Yousuf Rafiq

The coating process is broadly employed in the manufacturing of wallpapers, adhesive tapes, wrapping, protection of fabrics and metals, X-ray and photographic films…

Abstract

Purpose

The coating process is broadly employed in the manufacturing of wallpapers, adhesive tapes, wrapping, protection of fabrics and metals, X-ray and photographic films, beautification, books and magazines, film foils, magnetic records, coated paper, etc.

Design/methodology/approach

In this study, an incompressible flow of non-Newtonian fluid is modeled to inspect the rheological behavior of finite coating thickness in the reverse roll coating process. With the assistance of lubrication approximation theory (LAT), the dimensionless form of governing expressions is simplified. Exact solutions for distributions for velocity, flow rate, temperature and pressure gradient attained utilizing perturbation technique and their variation is presented as well as discussed in graphs. Meanwhile, some important factors from an engineering perspective including coating thickness and transition point were calculated mathematically and are displayed in a tabular manner. Also, streamlines are drawn to observe the flow pattern.

Findings

Prandtl fluid parameters provide a controlling factor to regulate the flow rate, velocity, coating thickness, and pressure gradient leading to an efficient coating process. Moreover, the Brinkman number and Prandtl fluid parameters significantly improve the temperature distribution.

Originality/value

In the literature, this study fills a gap in the theoretical prediction of coating thickness rheologically influenced by Prandtl fluid in reverse roll coating process.

Details

Multidiscipline Modeling in Materials and Structures, vol. 19 no. 6
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 3 September 2024

Sami Ul Haq, Muhammad Bilal Ashraf and Arooj Tanveer

The main focus is to provide a non-similar solution for the magnetohydrodynamic (MHD) flow of Casson fluid over a curved stretching surface through the novel technique of the…

Abstract

Purpose

The main focus is to provide a non-similar solution for the magnetohydrodynamic (MHD) flow of Casson fluid over a curved stretching surface through the novel technique of the artificial intelligence (AI)-based Lavenberg–Marquardt scheme of an artificial neural network (ANN). The effects of joule heating, viscous dissipation and non-linear thermal radiation are discussed in relation to the thermal behavior of Casson fluid.

Design/methodology/approach

The non-linear coupled boundary layer equations are transformed into a non-linear dimensionless Partial Differential Equation (PDE) by using a non-similar transformation. The local non-similar technique is utilized to truncate the non-similar dimensionless system up to 2nd order, which is treated as coupled ordinary differential equations (ODEs). The coupled system of ODEs is solved numerically via bvp4c. The data sets are constructed numerically and then implemented by the ANN.

Findings

The results indicate that the non-linear radiation parameter increases the fluid temperature. The Casson parameter reduces the fluid velocity as well as the temperature. The mean squared error (MSE), regression plot, error histogram, error analysis of skin friction, and local Nusselt number are presented. Furthermore, the regression values of skin friction and local Nusselt number are obtained as 0.99993 and 0.99997, respectively. The ANN predicted values of skin friction and the local Nusselt number show stability and convergence with high accuracy.

Originality/value

AI-based ANNs have not been applied to non-similar solutions of curved stretching surfaces with Casson fluid model, with viscous dissipation. Moreover, the authors of this study employed Levenberg–Marquardt supervised learning to investigate the non-similar solution of the MHD Casson fluid model over a curved stretching surface with non-linear thermal radiation and joule heating. The governing boundary layer equations are transformed into a non-linear, dimensionless PDE by using a non-similar transformation. The local non-similar technique is utilized to truncate the non-similar dimensionless system up to 2nd order, which is treated as coupled ODEs. The coupled system of ODEs is solved numerically via bvp4c. The data sets are constructed numerically and then implemented by the ANN.

Details

Multidiscipline Modeling in Materials and Structures, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 30 August 2024

A. Zeeshan, Hamza Javed, N. Shehzad, Sadiq M. Sait and R. Ellahi

This study aims to examine the cilia-driven flow of magnetohydrodynamics (MHD) non-Newtonian fluid through a porous medium. The Jeffrey fluid model is taken into account. The…

Abstract

Purpose

This study aims to examine the cilia-driven flow of magnetohydrodynamics (MHD) non-Newtonian fluid through a porous medium. The Jeffrey fluid model is taken into account. The fluid motion in a two-dimensional symmetric channel emphasizes the dominance of viscous properties over inertial properties in the context of long wavelength and low Reynolds number approximations.

Design/methodology/approach

An integrated numerical and analytic results are obtained by hybrid approach. A statistical method analysis of variance along with response surface methodology is used. Sensitivity analysis is used to validate the accuracy of nondimensional numbers.

Findings

The impact of various flow parameters is presented graphically and in numerical tables. It is noted that the velocity slip parameter is the most sensitive flow parameter in velocity and relaxation to retardation time ratio in temperature.

Originality/value

A model on cilia-generated flow of MHD non-Newtonian Jeffrey fluid is proposed.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 150