Search results

1 – 3 of 3
Article
Publication date: 1 July 2014

N. Banagaaya, W.H.A. Schilders, G. Alì and C. Tischendorf

Model order reduction (MOR) has been widely used in the electric networks but little has been done to reduce higher index differential algebraic equations (DAEs). The paper aims…

Abstract

Purpose

Model order reduction (MOR) has been widely used in the electric networks but little has been done to reduce higher index differential algebraic equations (DAEs). The paper aims to discuss these issues.

Design/methodology/approach

Most methods first do an index reduction before reducing a higher DAE but this can lead to a loss of physical properties of the system.

Findings

The paper presents a MOR method for DAEs called the index-aware MOR (IMOR) which can reduce a DAE while preserving its physical properties such as the index. The feasibility of this method is tested on real-life electric networks.

Originality/value

MOR has been widely used to reduce large systems from electric networks but little has been done to reduce higher index DAEs. Most methods first do an index reduction before reducing a large system of DAEs but this can lead to a loss of physical properties of the system. The paper presents a MOR method for DAEs called the IMOR which can reduce a DAE while preserving its physical properties such as the index. The feasibility of this method is tested on real-life electric networks.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 33 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 27 April 2020

Chengdong Yuan, Siyang Hu and Tamara Bechtold

Based on the framework of Krylov subspace-based model order reduction (MOR), compact models of the piezoelectric energy harvester devices can be generated. However, the stability…

Abstract

Purpose

Based on the framework of Krylov subspace-based model order reduction (MOR), compact models of the piezoelectric energy harvester devices can be generated. However, the stability of reduced piezoelectric model often cannot be preserved. In previous research studies, “MOR after Schur,” “Schur after MOR” and “multiphysics structure preserving MOR” methods have proven successful in obtaining stable reduced piezoelectric energy harvester models. Though the stability preservation of “MOR after Schur” and “Schur after MOR” methods has already been mathematically proven, the “multiphysics structure preserving MOR” method was not. This paper aims to provide the missing mathematical proof of “multiphysics structure preserving MOR.”

Design/methodology/approach

Piezoelectric energy harvesters can be represented by system of differential-algebraic equations obtained by the finite element method. According to the block structure of its system matrices, “MOR after Schur” and “Schur after MOR” both perform Schur complement transformations either before or after the MOR process. For the “multiphysics structure preserving MOR” method, the original block structure of the system matrices is preserved during MOR. 

Findings

This contribution shows that, in comparison to “MOR after Schur” and “Schur after MOR” methods, “multiphysics structure preserving MOR” method performs the Schur complement transformation implicitly, and therefore, stabilizes the reduced piezoelectric model.

Originality/value

The stability preservation of the reduced piezoelectric energy harvester model obtained through “multiphysics structure preserving MOR” method is proven mathematically and further validated by numerical experiments on two different piezoelectric energy harvester devices.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 39 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 3 September 2019

Tobias Frank, Steffen Wieting, Mark Wielitzka, Steffen Bosselmann and Tobias Ortmaier

A mathematical description of temperature-dependent boundary conditions is crucial in manifold model-based control or prototyping applications, where accurate thermal simulation…

Abstract

Purpose

A mathematical description of temperature-dependent boundary conditions is crucial in manifold model-based control or prototyping applications, where accurate thermal simulation results are required. Estimation of boundary condition coefficients for complex geometries in complicated or unknown environments is a challenging task and often does not fulfill given accuracy limits without multiple manual adaptions and experiments. This paper aims to describe an efficient method to identify thermal boundary conditions from measurement data using model order reduction.

Design/methodology/approach

An optimization problem is formulated to minimize temperature deviation over time between simulation data and available temperature sensors. Convection and radiation effects are expressed as a combined heat flux per surface, resulting in multiple temperature-dependent film coefficient functions. These functions are approximated by a polynomial function or splines, to generate identifiable parameters. A formulated reduced order system description preserves these parameters to perform an identification. Experiments are conducted with a test-bench to verify identification results with radiation, natural and forced convection.

Findings

The generated model can approximate a nonlinear transient finite element analysis (FEA) simulation with a maximum deviation of 0.3 K. For the simulation of a 500 min cyclic cooling and heating process, FEA takes a computation time of up to 13 h whereas the reduced model takes only 7-11 s, using time steps of 2 s. These low computation times allow for an identification, which is verified with an error below 3 K. When film coefficient estimation from literature is difficult due to complex geometries or turbulent air flows, identification is a promising approach to still achieve accurate results.

Originality/value

A well parametrized model can be further used for model-based control approaches or in observer structures. To the knowledge of the authors, no other methodology enables model-based identification of thermal parameters by physically preserving them through model order reduction and therefore derive it from a FEA description. This method can be applied to much more complex geometries and has been used in an industrial environment to increase product quality, due to accurate monitoring of cooling processes.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Access

Year

All dates (3)

Content type

1 – 3 of 3