Search results

1 – 10 of 16
Article
Publication date: 19 March 2021

Chengxi Zhang, Jin Wu, Yulong Huang, Yu Jiang, Ming-zhe Dai and Mingjiang Wang

Recent spacecraft attitude control systems tend to use wireless communication for cost-saving and distributed mission purposes while encountering limited communication resources…

Abstract

Purpose

Recent spacecraft attitude control systems tend to use wireless communication for cost-saving and distributed mission purposes while encountering limited communication resources and data exposure issues. This paper aims to study the attitude control problem with low communication frequency under the sampled-data.

Design/methodology/approach

The authors propose constructive control system structures based on quantization and event-triggered methods for intra-spacecraft and multi-spacecraft systems, and they also provide potential solutions to shield the control system's data security. The proposed control architectures can effectively save communication resources for both intra-spacecraft and multi-spacecraft systems.

Findings

The proposed control architectures no longer require sensors with trigger-ing mechanism and can achieve distributed control schemes. This paper also provides proposals of employing the public key encryption to secure the data in control-loop, which is transmitted by the event-triggered control mechanism.

Practical implications

Spacecraft attempts to use wireless communication, yet the attitude control system does not follow up promptly to accommodate these variations. Compared with existing approaches, the proposed control structures can save communication resources of control-loop in multi-sections effectively, and systematically, by rationally configuring the location of quantization and event-triggered mechanisms.

Originality/value

This paper presents several new control schemes and a necessary condition for the employment of encryption algorithms for control systems based on event-based communication.

Details

Aircraft Engineering and Aerospace Technology, vol. 93 no. 2
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 5 June 2020

Chengxi Zhang, Jin Wu, Ming-Zhe Dai, Bo Li and Mingjiang Wang

The purpose of this paper is to investigate the attitude cooperation control of multi-spacecraft with in-continuous communication.

Abstract

Purpose

The purpose of this paper is to investigate the attitude cooperation control of multi-spacecraft with in-continuous communication.

Design/methodology/approach

A decentralized state-irrelevant event-triggered control policy is proposed to reduce control updating frequency and further achieve in-continuous communication by introducing a self-triggered mechanism.

Findings

Each spacecraft transmits data independently, without the requirement for the whole system to communicate simultaneously. The local predictions and self-triggered mechanism avoid continuous monitoring of the triggering condition.

Research limitations/implications

This investigation is suitable for small Euler angle conditions.

Practical implications

The control policy based on event-triggered communication can provide potential solutions for saving communication resources.

Originality/value

This investigation uses event- and self-triggered policy to achieve in-communication for the multi-spacecraft system.

Details

Aircraft Engineering and Aerospace Technology, vol. 92 no. 7
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 6 June 2008

Christie Alisa Maddock and Massimiliano Vasile

The purpose of this paper is to present a methodology and experimental results on using global optimization algorithms to determine the optimal orbit, based on the mission…

Abstract

Purpose

The purpose of this paper is to present a methodology and experimental results on using global optimization algorithms to determine the optimal orbit, based on the mission requirements, for a set of spacecraft flying in formation with an asteroid.

Design/methodology/approach

A behavioral‐based hybrid global optimization approach is used to first characterize the solution space and find families of orbits that are a fixed distance away from the asteroid. The same optimization approach is then used to find the set of Pareto optimal solutions that minimize both the distance from the asteroid and the variation of the Sun‐spacecraft‐asteroid angle. Two sample missions to asteroids, representing constrained single and multi‐objective problems, were selected to test the applicability of using an in‐house hybrid stochastic‐deterministic global optimization algorithm (Evolutionary Programming and Interval Computation (EPIC)) to find optimal orbits for a spacecraft flying in formation with an orbit. The Near Earth Asteroid 99942 Apophis (2004 MN4) is used as the case study due to a fly‐by of Earth in 2029 leading to two potential impacts in 2036 or 2037. Two black‐box optimization problems that model the orbital dynamics of the spacecraft were developed.

Findings

It was found for the two missions under test, that the optimized orbits fall into various distinct families, which can be used to design multi‐spacecraft missions with similar orbital characteristics.

Research limitations/implications

The global optimization software, EPIC, was very effective at finding sets of orbits which met the required mission objectives and constraints for a formation of spacecraft in proximity of an asteroid. The hybridization of the stochastic search with the deterministic domain decomposition can greatly improve the intrinsic stochastic nature of the multi‐agent search process without the excessive computational cost of a full grid search. The stability of the discovered families of formation orbit is subject to the gravity perturbation of the asteroid and to the solar pressure. Their control, therefore, requires further investigation.

Originality/value

This paper contributes to both the field of space mission design for close‐proximity orbits and to the field of global optimization. In particular, suggests a common formulation for single and multi‐objective problems and a robust and effective hybrid search method based on behaviorism. This approach provides an effective way to identify families of optimal formation orbits.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 1 no. 2
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 8 June 2023

Hongying Shan, Mengyao Qin, Libin Zhang, Zunyan Meng, Peiyang Peng and Xinze Shan

The work efficiency and energy consumption of astronauts in the space station are the key issues in the operation of the space station, and how to evaluate the lean value of their…

Abstract

Purpose

The work efficiency and energy consumption of astronauts in the space station are the key issues in the operation of the space station, and how to evaluate the lean value of their activities is also complex and abstract. Combined with the idea of lean management, this paper aims to propose an space station dynamic value stream mapping system that can monitor and continuously improve the value flow and energy flow of astronauts in real time through lean methods.

Design/methodology/approach

Through systematic literature review, it is found that there is little research on the issue of lean management for astronauts. In manufacturing and services, value stream mapping is widely used for lean management. However, the static value stream map lacks the characteristics of real-time dynamics. This paper proposes to take the three modules of Muda detection, action recognition and energy monitoring as the basic content of the astronaut lean management framework to make the value stream and energy stream dynamic.

Findings

The theoretical framework of astronaut lean management is initially constructed, and the reasons for astronaut Muda and improvement ideas are also analyzed.

Originality/value

In fact, practitioners can use the proposed framework to identify the value of astronauts. Academically, these results collect research on dynamic value stream and lean management, providing a new way to identify value in aerospace using lean methods. Finally, the future research goals of astronaut lean management are put forward.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 8
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 3 May 2016

Alena Probst, Graciela González Peytaví, Bernd Eissfeller and Roger Förstner

The paper aims to introduce a trade-off method for selecting a mission concept for an asteroid mining mission. In particular, the method is applied to the KaNaRiA mission concept…

1044

Abstract

Purpose

The paper aims to introduce a trade-off method for selecting a mission concept for an asteroid mining mission. In particular, the method is applied to the KaNaRiA mission concept selection. After introducing the KaNaRiA project, the KaNaRiA mission concept selection and reference scenario are described in detail.

Design/methodology/approach

The paper introduces past relevant asteroid missions in general and the previous studies on asteroid mining in particular. Based on the review of past mission concepts to minor planets, the paper discusses the operational phases of a potential industrial and commercial space mining mission. The methodology for selecting a mission reference scenario is explained and the selected KaNaRiA mission scenario is described.

Findings

The key technology driver for a space mining mission is the autonomous on-board capability related to navigation, guidance and handling of hardware/software anomalies or unexpected events. With the methodology presented here, it is possible to derive a mission concept which provides an adequate test-bed for the validation and verification of algorithms for enhanced spacecraft autonomy. This is the primary scientific and engineering goal of the KaNaRiA project.

Practical implications

The mission concept selection method presented here can be used as a generalized approach for mining missions targeting asteroids in the solar system.

Originality/value

The availability and usage of space resources is seen as a possible solution for the imminent problem of diminishing terrestrial materials in the foreseen future. This paper explains a methodology to select mission concepts for asteroid mining missions.

Details

Aircraft Engineering and Aerospace Technology: An International Journal, vol. 88 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 2 January 2018

Nai-ming Qi, Qilong Sun and Yong Yang

The purpose of this paper is to study the effect of J3 perturbation of the Earth’s oblateness on satellite orbit compared with J2 perturbation.

Abstract

Purpose

The purpose of this paper is to study the effect of J3 perturbation of the Earth’s oblateness on satellite orbit compared with J2 perturbation.

Design/methodology/approach

Based on the parametric variation method in the time domain, considering more accurate Earth potential function by considering J3-perturbation effect, the perturbation equations about satellite’s six orbital elements (including semi-major axis, orbit inclination, right ascension of the ascending node, true anomaly, eccentricity and argument of perigee) has been deduced theoretically. The disturbance effects of J2 and J3 perturbations on the satellite orbit with different orbit inclinations have been studied numerically.

Findings

With the inclination increasing, the maximum of the semi-major axis increases weakly. The difference of inclination disturbed by the J2 and J3 perturbation is relative to orbit inclinations. J3 perturbation has weak effect on the right ascension and argument of perigee. The critical angle of the right ascension and argument of perigee which decides the precession direction is 90° and 63.43°, respectively. The disturbance effects of J2 and J3 perturbations on the argument of perigee, right ascension and eccentricity are weakened when the eccentricity increases, simultaneously, the difference of J2 and J3 perturbations on argument of perigee, right ascension and argument of perigee decreases with eccentricity increasing, respectively.

Practical implications

In the future, satellites need to orbit the Earth much more precisely for a long period. The J3 perturbation effect and the weight compared to J2 perturbation in LEO can provide a theoretical reference for researchers who want to improve the control accuracy of satellite. On the other hand, the theoretical analysis and simulation results can help people to design the satellite orbit to avoid or diminish the disturbance effect of the Earth’s oblateness.

Originality/value

The J3 perturbation equations of satellite orbit elements are deduced theoretically by using parametric variation method in this paper. Additionally, the comparison studies of J2 perturbation and J3 perturbation of the Earth’s oblateness on the satellite orbit with different initial conditions are presented.

Details

Aircraft Engineering and Aerospace Technology, vol. 90 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 4 April 2022

Yuxia Ji, Li Chen, Jun Zhang, Dexin Zhang and Xiaowei Shao

The purpose of this paper is to investigate the pose control of rigid spacecraft subject to dead-zone input, unknown external disturbance and parametric uncertainty in space…

240

Abstract

Purpose

The purpose of this paper is to investigate the pose control of rigid spacecraft subject to dead-zone input, unknown external disturbance and parametric uncertainty in space maneuvering mission.

Design/methodology/approach

First, a 6-Degree of Freedom (DOF) dynamic model of rigid spacecraft with dead-zone input, unknown external disturbances and parametric uncertainty is derived. Second, a super-twisting-like fixed-time disturbance observer (FTDO) with strong robustness is developed to estimate the lumped disturbances in fixed time. Based on the proposed observer, a non-singular fixed-time terminal sliding-mode (NFTSM) controller with superior performance is proposed.

Findings

Different from the existing sliding-mode controllers, the proposed control scheme can directly avoid the singularity in the controller design and speed up the convergence rate with improved control accuracy. Moreover, no prior knowledge of lumped disturbances’ upper bound and its first derivatives is required. The fixed-time stability of the entire closed-loop system is rigorously proved in the Lyapunov framework. Finally, the effectiveness and superiority of the proposed control scheme are proved by comparison with existing approaches.

Research limitations/implications

The proposed NFTSM controller can merely be applied to a specific type of spacecrafts, as the relevant system states should be measurable.

Practical implications

A NFTSM controller based on a super-twisting-like FTDO can efficiently deal with dead-zone input, unknown external disturbance and parametric uncertainty for spacecraft pose control.

Originality/value

This investigation uses NFTSM control and super-twisting-like FTDO to achieve spacecraft pose control subject to dead-zone input, unknown external disturbance and parametric uncertainty.

Details

Aircraft Engineering and Aerospace Technology, vol. 94 no. 8
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 29 July 2024

Weijia Lu, Chengxi Zhang, Fei Liu, Jin Wu, Jihe Wang and Lining Tan

This paper aims to investigate the relative translational control for multiple spacecraft formation flying. This paper proposes an engineering-friendly, structurally simple, fast…

19

Abstract

Purpose

This paper aims to investigate the relative translational control for multiple spacecraft formation flying. This paper proposes an engineering-friendly, structurally simple, fast and model-free control algorithm.

Design/methodology/approach

This paper proposes a tanh-type self-learning control (SLC) approach with variable learning intensity (VLI) to guarantee global convergence of the tracking error. This control algorithm utilizes the controller's previous control information in addition to the current system state information and avoids complicating the control structure.

Findings

The proposed approach is model-free and can obtain the control law without accurate modeling of the spacecraft formation dynamics. The tanh function can tune the magnitude of the learning intensity to reduce the control saturation behavior when the tracking error is large.

Practical implications

This algorithm is model-free, robust to perturbations such as disturbances and system uncertainties, and has a simple structure that is very conducive to engineering applications.

Originality/value

This paper verified the control performance of the proposed algorithm for spacecraft formation in the presence of disturbances by simulation and achieved high steady-state accuracy and response speed over comparisons.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 6
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 8 April 2021

Chengxi Zhang, Jin Wu, Ran Sun, Mingjiang Wang and Dechao Ran

The purpose of this paper is to study the general actuator modeling in spacecraft attitude control systems.

Abstract

Purpose

The purpose of this paper is to study the general actuator modeling in spacecraft attitude control systems.

Design/methodology/approach

The proposed module in this paper provides various non-ideal factors such as the second-order dynamic time response, time-delay, bias torques, dead-zones and saturation. The actuator module can make the simulation as close to the practical situation as possible.

Findings

This paper presents a practical integrated module for the simulation of attitude control algorithms. Based on theoretical modeling, we give simulation modules and numerical examples. The proposed model can be directly used in spacecraft control simulation. Instead of considering only a few of them, it makes the simulation more convincing. Though it may not be perfect, it is better than totally ignoring the actuator dynamics.

Originality/value

The authors provide an integrated actuator model for spacecraft attitude control simulation, considering as many nonlinear factors as possible once time.

Details

Aircraft Engineering and Aerospace Technology, vol. 93 no. 4
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 22 November 2021

Amin Mihankhah and Ali Doustmohammadi

The purpose of this paper, is to solve the problem of finite-time fault-tolerant attitude synchronization and tracking control of multiple rigid bodies in presence of model…

Abstract

Purpose

The purpose of this paper, is to solve the problem of finite-time fault-tolerant attitude synchronization and tracking control of multiple rigid bodies in presence of model uncertainty, external disturbances, actuator faults and saturation. It is assumed that the rigid bodies in the formation may encounter loss of effectiveness and/or bias actuator faults.

Design/methodology/approach

For the purpose, adaptive terminal sliding mode control and neural network structure are used, and a new sliding surface is proposed to guarantee known finite-time convergence not only at the reaching phase but also on the sliding surface. The sliding surface is then modified using a proposed auxiliary system to maintain stability under actuator saturation.

Findings

Assuming that the communication topology between the rigid bodies is governed by an undirected connected graph and the upper bounds on the actuators’ faults, estimation error of model uncertainty and external disturbance are unknown, not only the attitudes of the rigid bodies in the formation are synchronized but also they track the time-varying attitude of a virtual leader. Using Lyapunov stability approach, finite-time stability of the proposed control algorithms demonstrated on the sliding phase as well as the reaching phase. The effectiveness of the proposed algorithm is also validated by simulation.

Originality/value

The proposed controller has the advantage that the need for any fault detection and diagnosis mechanism and the upper bounds information on estimation error and external disturbance is eliminated.

Details

Aircraft Engineering and Aerospace Technology, vol. 94 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 10 of 16