Search results

1 – 6 of 6
Open Access
Article
Publication date: 28 August 2024

Fabian Kranert, Moritz Hinkelmann, Roland Lachmayer, Jörg Neumann and Dietmar Kracht

This study aims to extend the known design guidelines for the polymer-based fused filament fabrication (FFF) 3D printing process with the focus on function-integrated components…

Abstract

Purpose

This study aims to extend the known design guidelines for the polymer-based fused filament fabrication (FFF) 3D printing process with the focus on function-integrated components, specifically optomechanical parts. The potential of this approach is demonstrated by manufacturing function-integrated optomechanics for a low-power solid-state laser system.

Design/methodology/approach

For the production of function-integrated additively manufactured optomechanics using the FFF process, essential components and subsystems have been identified for which no design guidelines are available. This includes guidelines for integrating elements, particularly optics, into a polymer structure as well as guidelines for printing functional threads and ball joints. Based on these results, combined with prior research, a function-integrated low-power solid-state laser optomechanic was fabricated via the FFF process, using a commercial 3D printer of the type Ultimaker 3. The laser system's performance was assessed and compared to a reference system that employed commercial optomechanics, additionally confirming the design guidelines derived from the study.

Findings

Based on the design goal of function integration, the existing design guidelines for the FFF process are systematically extended. This success is demonstrated by the fabrication of an integrated optomechanic for a solid-state laser system.

Practical implications

Based on these results, scientists and engineers will be able to use the FFF process more extensively and benefit from the possibilities of function-integrated manufacturing.

Originality/value

Extensive research has been published on additive manufacturing of optomechanics. However, this research often emphasizes only cost reduction and short-term availability of components by reprinting existing parts. This paper aims to explore the capabilities of additive manufacturing in the production of function-integrated components to reduce the number of individual parts required, thereby decreasing the workload for system assembly and leading to an innovative production process for optical systems. Consequently, where needed, it provides new design guidelines or extends existing ones and verifies them by means of test series.

Details

Rapid Prototyping Journal, vol. 30 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 12 July 2024

Osama Habbal, Ahmad Farhat, Reem Khalil and Christopher Pannier

The purpose of this study is to assess a novel method for creating tangible three-dimensional (3D) morphologies (scaled models) of neuronal reconstructions and to evaluate its…

Abstract

Purpose

The purpose of this study is to assess a novel method for creating tangible three-dimensional (3D) morphologies (scaled models) of neuronal reconstructions and to evaluate its cost-effectiveness, accessibility and applicability through a classroom survey. The study addresses the challenge of accurately representing intricate and diverse dendritic structures of neurons in scaled models for educational purposes.

Design/methodology/approach

The method involves converting neuronal reconstructions from the NeuromorphoVis repository into 3D-printable mold files. An operator prints these molds using a consumer-grade desktop 3D printer with water-soluble polyvinyl alcohol filament. The molds are then filled with casting materials like polyurethane or silicone rubber, before the mold is dissolved. We tested our method on various neuron morphologies, assessing the method’s effectiveness, labor, processing times and costs. Additionally, university biology students compared our 3D-printed neuron models with commercially produced counterparts through a survey, evaluating them based on their direct experience with both models.

Findings

An operator can produce a neuron morphology’s initial 3D replica in about an hour of labor, excluding a one- to three-day curing period, while subsequent copies require around 30 min each. Our method provides an affordable approach to crafting tangible 3D neuron representations, presenting a viable alternative to direct 3D printing with varied material options ensuring both flexibility and durability. The created models accurately replicate the fidelity and intricacy of original computer aided design (CAD) files, making them ideal for tactile use in neuroscience education.

Originality/value

The development of data processing and cost-effective casting method for this application is novel. Compared to a previous study, this method leverages lower-cost fused filament fabrication 3D printing to create accurate physical 3D representations of neurons. By using readily available materials and a consumer-grade 3D printer, the research addresses the high cost associated with alternative direct 3D printing techniques to produce such intricate and robust models. Furthermore, the paper demonstrates the practicality of these 3D neuron models for educational purposes, making a valuable contribution to the field of neuroscience education.

Open Access
Article
Publication date: 25 April 2024

Ilse Valenzuela Matus, Jorge Lino Alves, Joaquim Góis, Paulo Vaz-Pires and Augusto Barata da Rocha

The purpose of this paper is to review cases of artificial reefs built through additive manufacturing (AM) technologies and analyse their ecological goals, fabrication process…

1398

Abstract

Purpose

The purpose of this paper is to review cases of artificial reefs built through additive manufacturing (AM) technologies and analyse their ecological goals, fabrication process, materials, structural design features and implementation location to determine predominant parameters, environmental impacts, advantages, and limitations.

Design/methodology/approach

The review analysed 16 cases of artificial reefs from both temperate and tropical regions. These were categorised based on the AM process used, the mortar material used (crucial for biological applications), the structural design features and the location of implementation. These parameters are assessed to determine how effectively the designs meet the stipulated ecological goals, how AM technologies demonstrate their potential in comparison to conventional methods and the preference locations of these implementations.

Findings

The overview revealed that the dominant artificial reef implementation occurs in the Mediterranean and Atlantic Seas, both accounting for 24%. The remaining cases were in the Australian Sea (20%), the South Asia Sea (12%), the Persian Gulf and the Pacific Ocean, both with 8%, and the Indian Sea with 4% of all the cases studied. It was concluded that fused filament fabrication, binder jetting and material extrusion represent the main AM processes used to build artificial reefs. Cementitious materials, ceramics, polymers and geopolymer formulations were used, incorporating aggregates from mineral residues, biological wastes and pozzolan materials, to reduce environmental impacts, promote the circular economy and be more beneficial for marine ecosystems. The evaluation ranking assessed how well their design and materials align with their ecological goals, demonstrating that five cases were ranked with high effectiveness, ten projects with moderate effectiveness and one case with low effectiveness.

Originality/value

AM represents an innovative method for marine restoration and management. It offers a rapid prototyping technique for design validation and enables the creation of highly complex shapes for habitat diversification while incorporating a diverse range of materials to benefit environmental and marine species’ habitats.

Details

Rapid Prototyping Journal, vol. 30 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 22 July 2024

Alessandro Bove, Fulvio Lieske, Flaviana Calignano and Luca Iuliano

Material extrusion (MEX) is one of the most known techniques in the additive manufacturing (AM) sector to produce components with a wide range of polymeric and composite…

Abstract

Purpose

Material extrusion (MEX) is one of the most known techniques in the additive manufacturing (AM) sector to produce components with a wide range of polymeric and composite materials. Moisture causes alterations in material properties and for filaments strongly hygroscopic like nylon-based composites this means greater ease of deterioration. Drying the filament to reduce the moisture content may not be sufficient if the humidity is not controlled during printing. The purpose of this study is to achieve the recovery of a commercial nylon-based composite filament by applying process optimization using an open source MEX machine.

Design/methodology/approach

A statistical approach based on Taguchi’s method allowed to achieve an ultimate tensile strength (UTS). A verification of the geometrical capabilities of the process has been performed according to the standard ISO/ASTM 52902-2019. Chemical tests were also carried out to test the resistance to corrosion in acid and basic solutions.

Findings

An UTS of 71.37 MPa was obtained, significantly higher than the value declared by the filament’s manufacturer (Stratasys Inc., USA). The best configuration of process parameters leads to good geometrical deviations for flat surfaces, in a range of 0.01 and 0.38 for flatness, while cylindrical faces showed more important deviations from the nominal values. The good applicability of the material in corrosive environments has been confirmed.

Originality/value

This study examined the performance restoration potential of a nylon composite filament that was significantly affected by storage conditions. For the filament manufacturer, if the material remains in ambient air for an hour or idle in the machine for more than 24 h, the material may no longer be suitable for printing. The study highlighted that the drying of the filament must not be temporary but constant to guarantee printability, and, by acting on the process parameters, it is possible to obtain better mechanical properties than declared by the manufacturer.

Details

Rapid Prototyping Journal, vol. 30 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 16 September 2024

Émerson dos Santos Passari, Carlos Henrique Lauermann, André J. Souza, Fabio Pinto Silva and Rodrigo Rodrigues de Barros

The rapid growth of 3D printing has transformed the cost-effective production of prototypes and functional items, primarily using extrusion technology with thermoplastics. This…

Abstract

Purpose

The rapid growth of 3D printing has transformed the cost-effective production of prototypes and functional items, primarily using extrusion technology with thermoplastics. This study aims to focus on optimizing mechanical properties, precisely highlighting the crucial role of mechanical compressive strength in ensuring the functionality and durability of 3D-printed components, especially in industrial and engineering applications.

Design/methodology/approach

Using the Box−Behnken experimental design, the research investigated the influence of layer thickness, wall perimeter and infill level on mechanical resistance through compression. Parameters such as maximum force, printing time and mass utilization are considered for assessing and enhancing mechanical properties.

Findings

The layer thickness was identified as the most influential parameter over the compression time, followed by the degree of infill. The number of surface layers significantly influences both maximum strength and total mass. Optimization strategies suggest reducing infill percentage while maintaining moderate to high values for surface layers and layer thickness, enabling the production of lightweight components with adequate mechanical strength and reduced printing time. Experimental validation confirms the effectiveness of these strategies, with generated regression equations serving as a valuable predictive tool for similar parameters.

Practical implications

This research offers valuable insights for industries using 3D printing in creating prototypes and functional parts. By identifying optimal parameters such as layer thickness, surface layers and infill levels, the study helps manufacturers achieve stronger, lighter and more cost-efficient components. For industrial and engineering applications, adopting the outlined optimization strategies can result in components with enhanced mechanical strength and durability, while also reducing material costs and printing times. Practitioners can use the developed regression equations as predictive tools to fine-tune their production processes and achieve desired mechanical properties more effectively.

Originality/value

This research contributes to the ongoing evolution of additive manufacturing, providing insights into optimizing structural rigidity through polylactic acid (PLA) selection, Box−Behnken design and overall process optimization. These findings advance the understanding of fused deposition modeling (FDM) technology and offer practical implications for more efficient and economical 3D printing processes in industrial and engineering applications.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 26 March 2024

Sergio de la Rosa, Pedro F. Mayuet, Cátia S. Silva, Álvaro M. Sampaio and Lucía Rodríguez-Parada

This papers aims to study lattice structures in terms of geometric variables, manufacturing variables and material-based variants and their correlation with compressive behaviour…

Abstract

Purpose

This papers aims to study lattice structures in terms of geometric variables, manufacturing variables and material-based variants and their correlation with compressive behaviour for their application in a methodology for the design and development of personalized elastic therapeutic products.

Design/methodology/approach

Lattice samples were designed and manufactured using extrusion-based additive manufacturing technologies. Mechanical tests were carried out on lattice samples for elasticity characterization purposes. The relationships between sample stiffness and key geometric and manufacturing variables were subsequently used in the case study on the design of a pressure cushion model for validation purposes. Differentiated areas were established according to patient’s pressure map to subsequently make a correlation between the patient’s pressure needs and lattice samples stiffness.

Findings

A substantial and wide variation in lattice compressive behaviour was found depending on the key study variables. The proposed methodology made it possible to efficiently identify and adjust the pressure of the different areas of the product to adapt them to the elastic needs of the patient. In this sense, the characterization lattice samples turned out to provide an effective and flexible response to the pressure requirements.

Originality/value

This study provides a generalized foundation of lattice structural design and adjustable stiffness in application of pressure cushions, which can be equally applied to other designs with similar purposes. The relevance and contribution of this work lie in the proposed methodology for the design of personalized therapeutic products based on the use of individual lattice structures that function as independent customizable cells.

Details

Rapid Prototyping Journal, vol. 30 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 6 of 6