Search results

1 – 5 of 5
Article
Publication date: 27 August 2024

Umar Farooq, Tao Liu, Ahmed Jan, Umer Farooq and Samina Majeed

In this study, we investigate the effects of an extended ternary hybrid Tiwari and Das nanofluid model on ethylene glycol flow, with a focus on heat transfer. Using the Cross…

Abstract

Purpose

In this study, we investigate the effects of an extended ternary hybrid Tiwari and Das nanofluid model on ethylene glycol flow, with a focus on heat transfer. Using the Cross non-Newtonian fluid model, we explore the heat transfer characteristics of this unique fluid in various applications such as pharmaceutical solvents, vaccine preservatives, and medical imaging techniques.

Design/methodology/approach

Our investigation reveals that the flow of this ternary hybrid nanofluid follows a laminar Cross model flow pattern, influenced by heat radiation and occurring around a stretched cylinder in a porous medium. We apply a non-similarity transformation to the nonlinear partial differential equations, converting them into non-dimensional PDEs. These equations are subsequently solved as ordinary differential equations (ODEs) using MATLAB’s bvp4c tools. In addition, the magnetic number in this study spans from 0 to 5, volume fraction of nanoparticles varies from 5% to 10%, and Prandtl number for EG as 204. This approach allows us to examine the impact of temperature on heat transfer and distribution within the fluid.

Findings

Graphical depictions illustrate the effects of parameters such as the Weissenberg number, porous parameter, Schmidt number, thermal conductivity parameter, Soret number, magnetic parameter, Eckert number, Lewis number, and Peclet number on velocity, temperature, concentration, and microorganism profiles. Our results highlight the significant influence of thermal radiation and ohmic heating on heat transmission, particularly in relation to magnetic and Darcy parameters. A higher Lewis number corresponds to faster heat diffusion compared to mass diffusion, while increases in the Soret number are associated with higher concentration profiles. Additionally, rapid temperature dissipation inhibits microbial development, reducing the microbial profile.

Originality/value

The numerical analysis of skin friction coefficients and Nusselt numbers in tabular form further validates our approach. Overall, our findings demonstrate the effectiveness of our numerical technique in providing a comprehensive understanding of flow and heat transfer processes in ternary hybrid nanofluids, offering valuable insights for various practical applications.

Details

Multidiscipline Modeling in Materials and Structures, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 21 December 2022

Vimal Kumar Deshmukh, Mridul Singh Rajput and H.K. Narang

The purpose of this paper is to present current state of understanding on jet electrodeposition manufacturing; to compare various experimental parameters and their implication on…

Abstract

Purpose

The purpose of this paper is to present current state of understanding on jet electrodeposition manufacturing; to compare various experimental parameters and their implication on as deposited features; and to understand the characteristics of jet electrodeposition deposition defects and its preventive procedures through available research articles.

Design/methodology/approach

A systematic review has been done based on available research articles focused on jet electrodeposition and its characteristics. The review begins with a brief introduction to micro-electrodeposition and high-speed selective jet electrodeposition (HSSJED). The research and developments on how jet electrochemical manufacturing are clustered with conventional micro-electrodeposition and their developments. Furthermore, this study converges on comparative analysis on HSSJED and recent research trends in high-speed jet electrodeposition of metals, their alloys and composites and presents potential perspectives for the future research direction in the final section.

Findings

Edge defect, optimum nozzle height and controlled deposition remain major challenges in electrochemical manufacturing. On-situ deposition can be used as initial structural material for micro and nanoelectronic devices. Integration of ultrasonic, laser and acoustic source to jet electrochemical manufacturing are current trends that are promising enhanced homogeneity, controlled density and porosity with high precision manufacturing.

Originality/value

This paper discusses the key issue associated to high-speed jet electrodeposition process. Emphasis has been given to various electrochemical parameters and their effect on deposition. Pros and cons of variations in electrochemical parameters have been studied by comparing the available reports on experimental investigations. Defects and their preventive measures have also been discussed. This review presented a summary of past achievements and recent advancements in the field of jet electrochemical manufacturing.

Article
Publication date: 11 October 2021

H.N.K. Al-Salman, Qutaiba A. Qasim, Rajaa Hussein Fayadh and Hussein H. Hussein

The purpose of this study is to establish Loratadine [LRD] quantification in purified and capsule formulations using a precise and specific Reversal Phase with a very…

Abstract

Purpose

The purpose of this study is to establish Loratadine [LRD] quantification in purified and capsule formulations using a precise and specific Reversal Phase with a very high-performance liquid Chromatographic [RP-HPLC] technique. The approach was evaluated in agreement with the principles of the International Conference on Harmonization [ICH]. Arcus EP-C18 Ion Pac column, 5 m, 4.6 mm, 250 mm, mobile phase Methanol: Acetonitrile (60:40) v/v. Dibasic potassium phosphate buffer, pH 7.2, flow rate 1.0 ml/min.

Design/methodology/approach

The HPLC system used a 340 nm UV detector for testing. A 10-min run time was used for the analysis. At concentrations ranging from 2 to 10 g/ml, the technique was linear (R2 = 0.9998), exact (intra-day and inter-day relative standard deviation [RSD] values 1.0%), accurate (range recovery = 96%–102%), exclusive and strong.

Findings

The detecting and quantitation limits were 0.92 g/ml and 2.15 g/ml, respectively.

Originality/value

The findings demonstrated that the proposed method could accurately determine LRD in bulk and pill dose formats quickly and accurately.

Details

International Journal of Human Rights in Healthcare, vol. 17 no. 4
Type: Research Article
ISSN: 2056-4902

Keywords

Article
Publication date: 30 July 2024

Xiaobing Fan, Bingli Pan, Hongyu Liu, Shuang Zhao, Xiaofan Ding, Haoyu Gao, Bing Han and Hongbin Liu

This paper aims to prepare an oil-impregnated porous polytetrafluoroethylene (PTFE) composite with advanced tribological properties using citric acid as a novel pore-forming agent.

Abstract

Purpose

This paper aims to prepare an oil-impregnated porous polytetrafluoroethylene (PTFE) composite with advanced tribological properties using citric acid as a novel pore-forming agent.

Design/methodology/approach

Citric acid (CA) was used to form pores in PTFE, and then oil-impregnated PTFE composites were prepared. The pore-forming efficiency of CA was evaluated. The possible mechanism of lubrication was proposed according to the tribological properties.

Findings

The results show CA is an efficient pore-forming agent and completely removed, and the porosity of the PTFE increases with the increase of the CA content. The oil-impregnated porous PTFE exhibits an excellent tribological performance, an increased wear resistance of 77.29% was realized in comparison with neat PTFE.

Originality/value

This study enhances understanding of the lubrication mechanism of oil-impregnated porous polymers and guides for their tribological applications.

Details

Industrial Lubrication and Tribology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 29 March 2023

Shan Peng, Ranran Yang, Binglong Lei, Yun Gao, Renhua Chen, Xiaohong Xia and Kevin P. Homewood

This paper aims to systematically demonstrate a methodology to determine the relative and absolute encapsulation efficiencies (αRe and αAb) for thermally- and chemically-robust…

Abstract

Purpose

This paper aims to systematically demonstrate a methodology to determine the relative and absolute encapsulation efficiencies (αRe and αAb) for thermally- and chemically-robust inorganic pigments, typically like ZrSiO4-based pigments, thereby enhancing their coloring performance.

Design/methodology/approach

The authors designed a route, surplus alkali-decomposition and subsequently strong-acid dissolution (SAD2) to completely decompose three classic zircon pigments (Pr–ZrSiO4, Fe2O3@ZrSiO4 and CdS@ZrSiO4) into clear solutions and preferably used inductively coupled plasma-optical emission spectrometry (ICP-OES) to determine the concentrations of host elements and chromophores, thereby deriving the numeric data and interrelation of αRe and αAb.

Findings

Zircon pigments can be thoroughly decomposed into some dissoluble zirconate–silicate resultants by SAD2 at a ratio of the fluxing agent to pigment over 6. ICP-OES is proved more suitable than some other quantification techniques in deriving the compositional concentrations, thereby the values of αRe and αAb, and their transformation coefficient KRA, which maintains stably within 0.8–0.9 in Fe2O3@ZrSiO4 and CdS@ZrSiO4 and is slightly reduced to 0.67–0.85 in Pr–ZrSiO4.

Practical implications

The SAD2 method and encapsulation efficiencies are well applicable for both zircon pigments and the other pigmental or non-pigmental inhomogeneous systems in characterizing their accurate composition.

Originality/value

The authors herein first proposed strict definitions for the relative and absolute encapsulation efficiencies for inorganic pigments, developed a relatively stringent methodology to determine their accurate values and interrelation.

Details

Pigment & Resin Technology, vol. 53 no. 5
Type: Research Article
ISSN: 0369-9420

Keywords

1 – 5 of 5