Search results

1 – 3 of 3
Article
Publication date: 10 September 2018

M. Taheri, Reza Naderi and Mohamad Mahdavian

This paper aims to enhance the barrier properties and active protection of a water-based silane coating on mild steel through nanoclay and zinc acetylacetonate simultaneously…

Abstract

Purpose

This paper aims to enhance the barrier properties and active protection of a water-based silane coating on mild steel through nanoclay and zinc acetylacetonate simultaneously included into the formulation.

Design/methodology/approach

The corrosion protection performance of the silane sol-gel coatings with no additive, zinc acetylacetonate, nanoclay and nanoclay + zinc acetylacetonate was monitored using electrochemical impedance spectroscopy during 5 h of immersion in a sodium chloride solution. Moreover, the surface of coatings was analyzed using a field emission scanning electron microscopy equipped with an energy dispersive X-ray spectrometer (FESEM-EDX) and water contact angle measurements.

Findings

In electrochemical impedance spectroscopy analysis, the impedance at low frequencies, coating resistance and charge transfer resistance were the parameters considered which indicated the superiority of silane coating formulated with both nanoclay and zinc acetylacetonate. According to the results of FESEM/EDX and water contact angle measurements, the superiority was linked with the enhancement in the barrier properties in the presence of nanoclay, as well as function of the corrosion inhibitor at coating–substrate interface.

Originality/value

According to the literature, there is no research conducted to study the impact of the simultaneous use of nanoclay and zinc acetylacetonate on the barrier properties and active protection of an eco-friendly silane sol-gel coating including glycidyloxypropyltrimethoxysilane, tetraethoxysilane and methyltriethoxysilane on mild steel in a sodium chloride solution.

Details

Pigment & Resin Technology, vol. 47 no. 5
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 12 December 2018

Resit Yildiz and Basak Dogru Mert

This paper aims to study inhibitory effect of 4-aminothiophenol on the corrosion of mild steel (MS) in 0.5 M HCl.

Abstract

Purpose

This paper aims to study inhibitory effect of 4-aminothiophenol on the corrosion of mild steel (MS) in 0.5 M HCl.

Design/methodology/approach

In this study, electrochemical experiments, quantum chemical calculations, potentiodynamic measurements, linear polarization resistance and scanning electron microscopy were used.

Findings

The experimental results suggest that this compound is efficient corrosion inhibitor and the inhibition efficiencies increase with increasing their (from 0.5 to 10.0 mM.) concentrations. This reveals that inhibitive actions of inhibitors were mainly due to adsorption on mild steel surface. The adsorption of these inhibitors was found to obey Langmuir adsorption model. The computed quantum chemical features show good correlation with empirical inhibition efficiencies.

Originality/value

The 4-aminothiophenol is suitable inhibitor for application in closed-circuit systems against corrosion. The study is original and has great impact in industrial area. The obtained theoretical results have been adapted with the experimental data.

Details

Anti-Corrosion Methods and Materials, vol. 66 no. 1
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 29 August 2023

Chigoziri N. Njoku, Temple Uzoma Maduoma, Wilfred Emori, Rita Emmanuel Odey, Beshel M. Unimke, Emmanuel Yakubu, Cyril C. Anorondu, Daniel I. Udunwa, Onyinyechi C. Njoku and Kechinyere B. Oyoh

Corrosion is a major concern for many industries that use metals as structural or functional materials, and the use of corrosion inhibitors is a widely accepted strategy to…

Abstract

Purpose

Corrosion is a major concern for many industries that use metals as structural or functional materials, and the use of corrosion inhibitors is a widely accepted strategy to protect metals from deterioration in corrosive environments. Moreover, the toxic nature, non-biodegradability and price of most conventional corrosion inhibitors have encouraged the application of greener and more sustainable options, with natural and synthetic drugs being major actors. Hence, this paper aims to stress the capability of natural and synthetic drugs as manageable and sustainable, environmentally friendly solutions to the problem of metal corrosion.

Design/methodology/approach

In this review, the recent developments in the use of natural and synthetic drugs as corrosion inhibitors are explored in detail to highlight the key advancements and drawbacks towards the advantageous utilization of drugs as corrosion inhibitors.

Findings

Corrosion is a critical issue in numerous modern applications, and conventional strategies of corrosion inhibition include the use of toxic and environmentally harmful chemicals. As greener alternatives, natural compounds like plant extracts, essential oils and biopolymers, as well as synthetic drugs, are highlighted in this review. In addition, the advantages and disadvantages of these compounds, as well as their effectiveness in preventing corrosion, are discussed in the review.

Originality/value

This survey stresses on the most recent abilities of natural and synthetic drugs as viable and sustainable, environmentally friendly solutions to the problem of metal corrosion, thus expanding the general knowledge of green corrosion inhibitors.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

1 – 3 of 3