Search results

1 – 10 of 596
Article
Publication date: 2 August 2024

Wenhua Li, Yuwo Fu, Junpeng Guo and Jiaxin Mao

Recently, short-form video apps, as a new form of social media, have attracted users and rapidly emerged by virtue of their personalized recommendation algorithms, interesting…

Abstract

Purpose

Recently, short-form video apps, as a new form of social media, have attracted users and rapidly emerged by virtue of their personalized recommendation algorithms, interesting forms of live interaction, and diverse interactive functions, which may lead to excessive use. From the perspective of IT affordances, this study combines the cognitive-affective-behavioral model and perceived values theory to examine the formation mechanism of the excessive use of short-form video apps.

Design/methodology/approach

We surveyed a total of 351 users who have used Tiktok, a typical short-form video app, and used their questionnaires to test the research model.

Findings

Searching affordance has a positive impact on perceived information value and perceived entertainment value. Furthermore, meta-voicing, recommending, and livestreaming affordance have a positive impact on perceived information value, perceived entertainment value, and perceived social networking value, which also have a positive impact on negative affect anticipation. In addition, negative affect anticipation is significantly positively correlated with excessive use.

Originality/value

In terms of theory, this study introduces the theory of IT affordances and perceived values into the cognitive-affective-behavioral model, to the best of our knowledge, for the first time. Furthermore, it conducts situational research on the formation mechanism of excessive use of short-form video apps and makes up for the lack of studying of excessive use behavior from the perspective of technical factors.

Details

Information Technology & People, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0959-3845

Keywords

Open Access
Article
Publication date: 18 April 2024

Changhai Tian and Shoushuai Zhang

The design goal for the tracking interval of high-speed railway trains in China is 3 min, but it is difficult to achieve, and it is widely believed that it is mainly limited by…

Abstract

Purpose

The design goal for the tracking interval of high-speed railway trains in China is 3 min, but it is difficult to achieve, and it is widely believed that it is mainly limited by the tracking interval of train arrivals. If the train arrival tracking interval can be compressed, it will be beneficial for China's high-speed railway to achieve a 3-min train tracking interval. The goal of this article is to study how to compress the train arrival tracking interval.

Design/methodology/approach

By simulating the process of dense train groups arriving at the station and stopping, the headway between train arrivals at the station was calculated, and the pattern of train arrival headway was obtained, changing the traditional understanding that the train arrival headway is considered the main factor limiting the headway of trains.

Findings

When the running speed of trains is high, the headway between trains is short, the length of the station approach throat area is considerable and frequent train arrivals at the station, the arrival headway for the first group or several groups of trains will exceed the headway, but the subsequent sets of trains will have a headway equal to the arrival headway. This convergence characteristic is obtained by appropriately increasing the running time.

Originality/value

According to this pattern, there is no need to overly emphasize the impact of train arrival headway on the headway. This plays an important role in compressing train headway and improving high-speed railway capacity.

Details

Railway Sciences, vol. 3 no. 3
Type: Research Article
ISSN: 2755-0907

Keywords

Article
Publication date: 13 June 2024

Jian Wang, Xinyi Zhang, Min Du, Xueyan Shan and Zhiyu Tian

The purpose of this study is to provide ideas and theoretical guidance for green, environmentally friendly and efficient “bacteriostasis with bacteria” technology.

Abstract

Purpose

The purpose of this study is to provide ideas and theoretical guidance for green, environmentally friendly and efficient “bacteriostasis with bacteria” technology.

Design/methodology/approach

In this paper, a beneficial strain of bacteria was extracted and purified from marine mud. Weight-loss test, morphological observation and electrochemical test were used to systematically study the effect of sulfate-reducing bacteria (SRB)-induced corrosion inhibition on X65 steel in simulated offshore oil field production water.

Findings

The results showed that a beneficial strain was selected and identified as Vibrio alginolyticus. Under the condition of co-culture of SRB, the average corrosion rate of X65 steel was significantly reduced. In the mixed bacterial system, the surface of X65 steel samples was relatively flat, and the structure of biofilm and corrosion product film was dense. The number of corrosion pits, the average diameter and depth of corrosion pits were significantly reduced. The localized corrosion of X65 steel was significantly inhibited.

Originality/value

The complex and changing marine environment makes the corrosion problem of marine steel increasingly severe, and the microbiologically influenced corrosion (MIC) caused by SRB is particularly serious. The research and development of environmentally friendly corrosion protection technology is a long-term and difficult problem. The use of beneficial microorganisms to control MIC is a green and efficient anticorrosion measure. Compared with terrestrial microorganisms, marine microorganisms can adapt to complex environments, and their metabolites exhibit special biological activities. The use of marine beneficial bacteria can inhibit SRB activity to achieve the corrosion inhibition effect.

Article
Publication date: 21 May 2024

Anand Mohan Pandey, Sajan Kapil and Manas Das

Selective jet electrodeposition (SJED) is an emerging additive manufacturing (AM) technology for realizing metallic components of nano and micro sizes. The deposited parts on the…

1200

Abstract

Purpose

Selective jet electrodeposition (SJED) is an emerging additive manufacturing (AM) technology for realizing metallic components of nano and micro sizes. The deposited parts on the substrate form metallurgical bonding, so separating them from the substrate is an unsolved issue. Therefore, this paper aims to propose a method for separating the deposited micro parts from a sacrificial substrate. Furthermore, single and multi-bead optimization is performed to fabricate microparts with varying density.

Design/methodology/approach

A typical SJED process consists of a nozzle (to establish a column of electrolytes) retrofitted on a machine tool (to provide relative motion between substrate and nozzle) that deposits material atom-by-atom on a conductive substrate.

Findings

A comprehensive study of process parameters affecting the layer height, layer width and morphology of the deposited micro-parts has been provided. The uniformity in the deposited parts can be achieved with the help of low applied voltage and high scanning speed. Multi-bead analysis for the flat surface condition is experimentally performed, and the flat surface condition is achieved when the centre distance between two adjacent beads is kept at half of the width of a single bead.

Originality/value

Although several literatures have demonstrated that the SJED process can be used for the fabrication of parts; however, part fabrication through multi-bead optimization is limited. Moreover, the removal of the fabricated part from the substrate is the novelty of the current work.

Details

Rapid Prototyping Journal, vol. 30 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 2 July 2024

Shaveta Kumari and Saurabh Srivastava

A stochastic technique for solving interval non-linear problems using generalized Hukuhara (GH)-difference is proposed. The non-linear programming problem in interval form is…

Abstract

Purpose

A stochastic technique for solving interval non-linear problems using generalized Hukuhara (GH)-difference is proposed. The non-linear programming problem in interval form is transformed into an equivalent non-linear programming problem with real coefficients by associating a Gaussian random variable to the interval and the six-sigma rule. The conceptualized idea eliminates the decision maker’s instinctive selection of weight functions and provides an alternative to the order relation method, max-min criteria-based methods and bi-level approaches for representing intervals as real numbers. To demonstrate a coherent understanding, numerical examples have been used.

Design/methodology/approach

A stochastic approach has been used to develop a solution technique for solving interval nonlinear programming problems which arise in the modeling of scientific and engineering problems under uncertain environments.

Findings

The proposed idea eliminates the decision maker’s instinctive selection of weight functions and provides an alternative to the order relation method, max-min criteria-based methods and bi-level approaches for representing intervals as real numbers. This method provides specific results rather than in the interval form, which are more practical and implementable by the decision maker.

Originality/value

This is to certify, that the research paper submitted is an outcome of original work. I have duly acknowledged all the sources from which the ideas and extracts have been taken. This article has not been submitted elsewhere for publication.

Details

Engineering Computations, vol. 41 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 26 June 2024

Jian Sun, Junran Huang, Zhonghao Tian, Jinmei Yao, Yang Zhang and Lu Wang

This paper aims to understand the vibration characteristics of full ceramic ball bearings under grease lubrication, reduce the vibration of the bearings and improve their service…

Abstract

Purpose

This paper aims to understand the vibration characteristics of full ceramic ball bearings under grease lubrication, reduce the vibration of the bearings and improve their service life.

Design/methodology/approach

The Hertz contact stiffness formula for full ceramic ball bearings is constructed; the equivalent comprehensive stiffness calculation model and vibration model of full ceramic ball bearings are established. The dynamic characteristic test of full ceramic ball bearing under grease lubrication was carried out by using the bearing life testing machine, and its vibration was measured, and its vibration acceleration root-mean-square was obtained by software calculation and compared with the simulation results.

Findings

At the rotational speed of 12,000 r/min, the root-mean-square value of vibration acceleration is maximum 10.82 m/s2, and the error is also maximum 7.49%. As the rotational speed increases, the oil film stiffness decreases. In the radial load of 600 N, the vibration acceleration root-mean-square is minimum 6.40 m/s2, but its error is maximum 6.56%. As the radial load increases, the vibration of the bearing decreases and then increases, so under certain conditions increasing the radial load can reduce the bearing vibration. With different types of grease, the best preload is also different; low-speed heavy load should be used when the viscosity of the grease is large, and high-speed light load should be used when the choice of smaller viscosity grease is made.

Originality/value

It provides a theoretical basis for the application of full ceramic ball bearings under grease lubrication, which is of great significance for reducing the vibration of bearings as well as enhancing the service life of bearings.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-03-2024-0094/

Details

Industrial Lubrication and Tribology, vol. 76 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 7 May 2024

Yifeng Zhang and Min-Xuan Ji

The aim of this study is to discern the role of digital finance in driving rural industrial integration and revitalization. Specifically, it intends to shed light on how the deep…

Abstract

Purpose

The aim of this study is to discern the role of digital finance in driving rural industrial integration and revitalization. Specifically, it intends to shed light on how the deep development of digital finance can contribute to the optimization and transformation of the rural industrial structure. The research further explores the particular effects of this financial transformation in the central and western regions of China.

Design/methodology/approach

This research studies the influence of digital finance on rural industrial integration across 30 Chinese provinces from 2011 to 2020. Utilizing the entropy weight method, a comprehensive evaluation index system is established to gauge the level of rural industrial integration. A two-way fixed effects model, intermediary effect model, and threshold effect model are employed to decipher the relationship between digital finance and rural industrial integration.

Findings

Findings reveal a positive relationship between digital finance and rural industrial integration. A single threshold feature was identified: beyond a traditional finance development level, the marginal effect of digital finance on rural industrial integration increases. These effects are more noticeable in central and western regions.

Originality/value

Empirical outcomes contribute to policy discourse on rural digital finance, assisting policymakers in crafting effective strategies. Understanding the threshold of traditional finance development provides a new perspective on the potential of digital finance to drive rural industrial integration.

Details

China Agricultural Economic Review, vol. 16 no. 3
Type: Research Article
ISSN: 1756-137X

Keywords

Article
Publication date: 13 June 2024

Chen Yu and Wei Tian

This paper aims to investigate the application of 3D printing technology, particularly using sand-type materials, in the creation of artificial rock models for rock mechanics…

Abstract

Purpose

This paper aims to investigate the application of 3D printing technology, particularly using sand-type materials, in the creation of artificial rock models for rock mechanics experimentation.

Design/methodology/approach

Using a comprehensive analysis, this research explores the utilization of 3D printing technology in rock mechanics. Sand-type materials are specifically investigated for their ability to replicate natural rock characteristics. The methodology involves a review of recent achievements and experimentation in this field.

Findings

The study reveals that sand-type 3D printing materials demonstrate comparable properties to natural rocks, including brittle characteristics, surface roughness, microstructural features and crack propagation patterns.

Research limitations/implications

While the research establishes the viability of sand-type 3D printing materials, it acknowledges limitations such as the need for further exploration and validation. Generalizability may be constrained, warranting additional research to address these limitations.

Originality/value

This research contributes insights into the potential application of sand-type 3D printing materials in indoor rock physics experiments. The findings may guide future endeavors in fabricating rock specimens with consistent structures for practical rock mechanics applications.

Details

Rapid Prototyping Journal, vol. 30 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 19 March 2024

Chun Tian, Gengwei Zhai, Mengling Wu, Jiajun Zhou and Yaojie Li

In response to the problem of insufficient traction/braking adhesion force caused by the existence of the third-body medium on the rail surface, this study aims to analyze the…

Abstract

Purpose

In response to the problem of insufficient traction/braking adhesion force caused by the existence of the third-body medium on the rail surface, this study aims to analyze the utilization of wheel-rail adhesion coefficient under different medium conditions and propose relevant measures for reasonable and optimized utilization of adhesion to ensure the traction/braking performance and operation safety of trains.

Design/methodology/approach

Based on the PLS-160 wheel-rail adhesion simulation test rig, the study investigates the variation patterns of maximum utilized adhesion characteristics on the rail surface under different conditions of small creepage and large slip. Through statistical analysis of multiple sets of experimental data, the statistical distribution patterns of maximum utilized adhesion on the rail surface are obtained, and a method for analyzing wheel-rail adhesion redundancy based on normal distribution is proposed. The study analyzes the utilization of traction/braking adhesion, as well as adhesion redundancy, for different medium under small creepage and large slip conditions. Based on these findings, relevant measures for the reasonable and optimized utilization of adhesion are derived.

Findings

When the third-body medium exists on the rail surface, the train should adopt the low-level service braking to avoid the braking skidding by extending the braking distance. Compared with the current adhesion control strategy of small creepage, adopting appropriate strategies to control the train’s adhesion coefficient near the second peak point of the adhesion coefficient-slip ratio curve in large slip can effectively improve the traction/braking adhesion redundancy and the upper limit of adhesion utilization, thereby ensuring the traction/braking performance and operation safety of the train.

Originality/value

Most existing studies focus on the wheel-rail adhesion coefficient values and variation patterns under different medium conditions, without considering whether the rail surface with different medium can provide sufficient traction/braking utilized adhesion coefficient for the train. Therefore, there is a risk of traction overspeeding/braking skidding. This study analyzes whether the rail surface with different medium can provide sufficient traction/braking utilized adhesion coefficient for the train and whether there is redundancy. Based on these findings, relevant measures for the reasonable and optimized utilization of adhesion are derived to further ensure operation safety of the train.

Article
Publication date: 8 January 2024

Tong-Tong Lin, Ming-Zhi Yang, Lei Zhang, Tian-Tian Wang, Yu Tao and Sha Zhong

The aerodynamic differences between the head car (HC) and tail car (TC) of a high-speed maglev train are significant, resulting in control difficulties and safety challenges in…

Abstract

Purpose

The aerodynamic differences between the head car (HC) and tail car (TC) of a high-speed maglev train are significant, resulting in control difficulties and safety challenges in operation. The arch structure has a significant effect on the improvement of the aerodynamic lift of the HC and TC of the maglev train. Therefore, this study aims to investigate the effect of a streamlined arch structure on the aerodynamic performance of a 600 km/h maglev train.

Design/methodology/approach

Three typical streamlined arch structures for maglev trains are selected, i.e. single-arch, double-arch and triple-arch maglev trains. The vortex structure, pressure of train surface, boundary layer, slipstream and aerodynamic forces of the maglev trains with different arch structures are compared by adopting improved delayed detached eddy simulation numerical calculation method. The effects of the arch structures on the aerodynamic performance of the maglev train are analyzed.

Findings

The dynamic topological structure of the wake flow shows that a change in arch structure can reduce the vortex size in the wake region; the vortex size with double-arch and triple-arch maglev trains is reduced by 15.9% and 23%, respectively, compared with a single-arch maglev train. The peak slipstream decreases with an increase in arch structures; double-arch and triple-arch maglev trains reduce it by 8.89% and 16.67%, respectively, compared with a single-arch maglev train. The aerodynamic force indicates that arch structures improve the lift imbalance between the HC and TC of a maglev train; double-arch and triple-arch maglev trains improve it by 22.4% and 36.8%, respectively, compared to a single-arch maglev train.

Originality/value

This study compares the effects of a streamlined arch structure on a maglev train and its surrounding flow field. The results of the study provide data support for the design and safe operation of high-speed maglev trains.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 596