Search results

1 – 10 of over 1000
Article
Publication date: 8 March 2011

Z.A. Wang, Z.R. Zhou and G.X. Chen

The paper aims to study comparatively the fretting behavior in gross slip regime of fretting both under grease lubrication and dry condition and to investigate the mechanism of…

Abstract

Purpose

The paper aims to study comparatively the fretting behavior in gross slip regime of fretting both under grease lubrication and dry condition and to investigate the mechanism of palliation of fretting wear with grease lubrication.

Design/methodology/approach

All fretting tests were carried out on high‐temperature fretting devices with standard GCr15 bearing steel ball against 45 steel flat and against GCr15 bearing steel flat contact pairs. The wear scar was examined by optical microscope, surface profiler and the confocal laser scanning microscope as well as energy dispersive X‐ray spectroscopy.

Findings

Compared with dry condition, the coefficient of friction and wear are decreased drastically and wear occurs mainly at the early stage of fretting under grease lubrication. The palliation effect of grease lubrication is closely associated with the amount of oil separated from the grease, the low‐oxidation corrosion and high‐hardness white layer. However, the bubbles which expelled from the contact edges have little influence on fretting wear.

Research limitations/implications

The tested greases do not contain any additives for preventing possible misinterpretations of the results, but it is necessary to investigate the influence of different lubricant additives added to grease on friction and wear at different fretting conditions.

Practical implications

The research reveals that the palliation effect of grease lubrication on fretting wear is related closely to the amount of oil separated from the grease. The bigger penetration and more susceptible greases, which are easier to separate from the base oil, should be taken into account for palliation of fretting wear.

Originality/value

The presented results help to understand the palliation mechanism of grease lubrication and could be useful for designers of engineering assembly for which fretting wear is an issue.

Details

Industrial Lubrication and Tribology, vol. 63 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 26 September 2023

Jiabao Pan, Rui Li and Ao Wang

The adverse effects of temperature on the lubricating properties of nano magnetorheological grease are reduced by applying of a magnetic field.

Abstract

Purpose

The adverse effects of temperature on the lubricating properties of nano magnetorheological grease are reduced by applying of a magnetic field.

Design/methodology/approach

Nano magnetorheological grease was prepared via a thermal water bath with stirring. The lubricating properties of the grease were investigated at different temperatures. Then the lubricity of the prepared nano magnetorheological grease was investigated under the effect of thermomagnetic coupling.

Findings

As the temperature rises, the coefficient of friction of grease lubrication gradually increases, surface wear gradually increases and lubrication performance gradually decreases. Compared with grease, magnetorheological grease has a decreased coefficient of friction and enhanced lubrication effect under the action of a magnetic field at different temperatures.

Originality/value

A lubrication method using a magnetic field to reduce the effect of temperature is established, thereby providing new ideas for lubrication design under a wide range of temperature conditions.

Details

Industrial Lubrication and Tribology, vol. 75 no. 9
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 September 1965

E.G. ELLIS

A series of articles dealing, in as simple a way as possible, with the basic facts of lubrication, lubricants, their selection and prescription, specification, application, and…

Abstract

A series of articles dealing, in as simple a way as possible, with the basic facts of lubrication, lubricants, their selection and prescription, specification, application, and testing. This series is primarily intended for students, engineering personnel who may be unfamiliar with certain aspects and others who, one way or another, are interested in this important subject. Part One in our March Issue dealt with Friction, Lubrication and Wear. Part Two in our July Issue dealt with Mineral Oils and their Additives

Details

Industrial Lubrication and Tribology, vol. 17 no. 9
Type: Research Article
ISSN: 0036-8792

Article
Publication date: 1 February 1953

PREVIOUS articles in this series have dealt with the duties and properties of the lubricant with regard to both grease and oil lubrication. We shall now consider methods of…

Abstract

PREVIOUS articles in this series have dealt with the duties and properties of the lubricant with regard to both grease and oil lubrication. We shall now consider methods of applying the lubricant. Commencing with application of grease, it will be seen that various points of bearing housing design will be mentioned as they affect lubrication.

Details

Industrial Lubrication and Tribology, vol. 5 no. 2
Type: Research Article
ISSN: 0036-8792

Article
Publication date: 14 September 2015

Juozas Padgurskas, Raimundas Rukuiža, Arturas Kupcinskas and Raimondas Kreivaitis

The purpose of this paper is to conduct research on the possibility of improving the tribological and utilization properties of lard and rapeseed oil bio-based greases by mixing…

Abstract

Purpose

The purpose of this paper is to conduct research on the possibility of improving the tribological and utilization properties of lard and rapeseed oil bio-based greases by mixing it with ethanol and selection of thickener and modification with special biological additives.

Design/methodology/approach

Rapeseed oil- and lard-based greases with sodium and lithium soap thickeners were mixed with either water or ethanol and modified with a special biological anti-wear additive. Tribological properties of modified lubricants evaluated on a four-ball machine.

Findings

Rapeseed oil- and lard-based greases suspended in ethanol and modified with bio-additive have the same wear resistance as the industrial non-biological lubrication grease and much higher wear resistance as bio-based reference grease. The tribological efficiency of the additives is higher in greases of rapeseed oil and less efficient in lard-based greases. Oxidation and wear tests show that investigated bio-based greases have comparatively stable tribological properties also after their aging. Modified greases have sufficient consistence according penetration measurements and high thermal resistance according drop-point temperature measurements. All produced experimental greases pass within the category of the easily degradable materials.

Originality/value

The greases mixed with the ethanol make possible to form more homogeneous and stable grease mixture. Modified bio-based greases have significantly higher wear resistance as bio-based reference grease, their lubrication properties are stable also after the aging and are categorized as easily degradable materials.

Details

Industrial Lubrication and Tribology, vol. 67 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 25 February 2022

Jiabao Pan, Huaibiao Wu, Ao Wang, Qingwen Dai and Xiaolei Wang

This paper aims to investigate the influence of high-temperature thermal action on grease performance from the angle of film-forming performance.

129

Abstract

Purpose

This paper aims to investigate the influence of high-temperature thermal action on grease performance from the angle of film-forming performance.

Design/methodology/approach

A static thermal aging method was used to prepare high-temperature thermal grease samples after high-temperature thermal action. On the basis of optical interference technology, the film-forming characteristics of fresh grease samples and the grease samples after high-temperature thermal action under variable speed and fixed speed conditions were explored.

Findings

The decrease in the structural entanglement performance of the grease after short-term high-temperature thermal action makes its film-forming performance better. The mechanism is that the lubricating grease soap fiber entanglement is reduced. Although the continuous high-temperature thermal action can make the grease film-forming performance better, its mechanism is that the soap fiber structure caused by high-temperature thermal action is damaged and is easy to be cut off under the action of shear.

Originality/value

The effect of structural system change on its film formation performance was discussed in combination with the change in grease structure characteristics, and the mechanism of action was revealed.

Details

Industrial Lubrication and Tribology, vol. 74 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 25 January 2021

Fuqin Yang, Dexing Hu, Qianhao Xiao and Shun Zhao

This paper aims to study line-contact elastohydrodynamic grease lubrication properties of surface-textured rollers as well as the effect of different crown widths (dw) on oil film…

Abstract

Purpose

This paper aims to study line-contact elastohydrodynamic grease lubrication properties of surface-textured rollers as well as the effect of different crown widths (dw) on oil film thickness under textured conditions.

Design/methodology/approach

The laser processing method was used to make the micro-texture on the surface of GCr15 steel rollers; lithium grease was used as the lubricant, and line-contact elastohydrodynamic grease lubrication experiments under pure sliding conditions were performed on light interference elastohydrodynamic-lubricated experimental table.

Findings

The results show that the line-contact elastohydrodynamic grease lubrication is closely related to the textured crown width of steel rollers. At low speeds and light loads, texturing has an inevitable inhibitory effect on the formation of the lubricating oil film, and the smaller the width of the crown area, the more obvious the inhibitory effect, which is not conducive to the improvement of the lubrication condition. At high speeds and high loads, the textured roller with dw = 1 mm has the largest oil film thickness and shows better lubrication performance.

Originality/value

At present, there is little research on the surface texture of line-contact friction pairs. This work explores the effect of different textured crown width on the lubricating properties of line-contact elastohydrodynamic grease lubrication by experiment. It provides a new theoretical basis for the subsequent practical application of surface texture technology.

Details

Industrial Lubrication and Tribology, vol. 73 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 February 2000

Jan Lundberg

Describes a comprehensive field test to determine the best grease for spherical roller bearings in railway waggon wheels and increase the knowledge of grease lubrication. Nine…

Abstract

Describes a comprehensive field test to determine the best grease for spherical roller bearings in railway waggon wheels and increase the knowledge of grease lubrication. Nine different fully‐formulated commercial greases were examined in the wheel bearings of five ore waggons, used for transporting ore commercially by railroad from the Kiruna Mine in northern Sweden to Narvik in northern Norway for shipping to foreign markets. After the end of the test period, the wear and electrical damage, as well as the rust on the bearings, were also studied. In order to find out the optimum grease for this application, draws up a specification of requirements and uses a systematic approach to development of an evaluation method that could be applied to greases in actual service.

Details

Industrial Lubrication and Tribology, vol. 52 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 7 March 2008

Antoni Neyman and Jan Sikora

The aim of this paper is to research grease and additives' influence on fretting wear of mild steel.

Abstract

Purpose

The aim of this paper is to research grease and additives' influence on fretting wear of mild steel.

Design/methodology/approach

Experiments were performed on a laboratory stand with contact conditions cylinder on flat. The mild steel couples were tested under dry conditions and lubricated with mineral and synthetic greases containing as additives: graphite, molybdenum disulphide, ZDDP and molybdenum dithiocarbamate in different concentrations.

Findings

The results revealed a significant influence of grease consistency and its welding load on the fretting wear of steel couples. Graphite and molybdenum disulphide were effective in a 10 percent concentration. ZDDP additive in a more than 1 percent concentration increased fretting wear. Molybdenum dithiocarbamate was not more effective than molybdenum disulphide powder. Grease lubrication of the fretted couple changed significantly the wear mechanism observed on SEM photographs of fretting scars.

Practical implications

The paper presents some indications of proper selection of grease for fretting prevention.

Originality/value

The influence of the main features of grease on fretting wear was confirmed on the basis of extensive investigation.

Details

Industrial Lubrication and Tribology, vol. 60 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 3 August 2021

Laura Rosenkranz, Silvia Richter, Georg Jacobs, Adrian Mikitisin, Joachim Mayer, Andreas Stratmann and Florian König

Rolling bearing operation under mixed and boundary lubrication conditions may lead to heavy adhesive or abrasive wear, which may lead to wear-induced rolling bearing failure. The…

Abstract

Purpose

Rolling bearing operation under mixed and boundary lubrication conditions may lead to heavy adhesive or abrasive wear, which may lead to wear-induced rolling bearing failure. The purpose of this paper is to investigate the wear protection capabilities of different grease compositions at varying temperatures. It is considered that the temperature influences the lubrication conditions, the behaviour of grease components, namely, bleed oil and thickener, as well as the tribofilm formation due to tribo-chemical interactions between additives and surfaces.

Design/methodology/approach

In this study, four different greases were produced on the basis of a mineral base oil by varying the thickener and the addition of ZDDP. Various grease-lubricated rolling bearing experiments were conducted in a wide temperature range from 0°C to 120°C. Subsequently, the wear pattern, tribofilm formation and grease structures were analysed. Thereby, the influence of the different grease thickeners and the performance of ZDDP as a common antiwear and extreme pressure additive was evaluated.

Findings

The results show a strong temperature-dependency and allow a classification of temperature ranges concerning wear protection. At low temperatures, all greases provide a very good wear protection without the evidence of additive-based tribofilm formation. In the experiments at elevated temperatures, ZDDP tribofilms were formed. The formation depends on the thickener type: in comparison to lithium thickener, polyurea thickener favours more protective tribofilms at the same temperature. The experimental results show that medium temperatures in the range of 40°C–60°C are critical concerning wear due to the insufficient tribolayer formation and limited load carrying capacity of the grease.

Originality/value

Temperature is a key operating parameter for grease lubrication in roller bearings. The experimental work enables consideration of different impact pathways of temperature by combining roller bearing tests and microanalysis.

Details

Industrial Lubrication and Tribology, vol. 73 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of over 1000