Search results

1 – 6 of 6
Article
Publication date: 7 May 2024

Pingping Hou, Zheng Qian, Meng Xin Hu, Ji Qi Liu, Jun Zhang, Wei Zhao, Xiao Li, Yong Wang, HongYan Huang and Qian Ping Ran

The purpose of this study is to explore the interfacial adhesion between superhydrophobic coatings FC-X (X = 1%, 2%, 3%, 4% and 5%) and the concrete substrate, along with the…

Abstract

Purpose

The purpose of this study is to explore the interfacial adhesion between superhydrophobic coatings FC-X (X = 1%, 2%, 3%, 4% and 5%) and the concrete substrate, along with the impact of FC-X on the water repellency characteristics of the concrete substrate.

Design/methodology/approach

One synthetic step was adopted to prepare novel F-SiO2 NP hybrid fluororesin coating. The impact of varying mass fractions of F-SiO2 NPs on the superhydrophobicity of FC-X was analyzed and subsequently confirmed through water contact angle (WCA) measurements. Superhydrophobic coatings were simply applied to the concrete substrate using a one-step spraying method. The interfacial adhesion between FC-X and the concrete substrate was analyzed using tape pasting tests and abrasion resistance measurements. The influence of FC-X on the water repellency of the concrete substrate was investigated through measurements of water absorption, impermeability and electric flux.

Findings

FC-4% exhibits excellent superhydrophobicity, with a WCA of 157.5° and a sliding angle of 2.3°. Compared to control sample, FC-X exhibits better properties, including chemical durability, wear resistance, adhesion strength, abrasion resistance, water resistance and impermeability.

Practical implications

This study offers a thorough investigation into the practical implications of enhancing the durability and water repellency of concrete substrates by using superhydrophobic coatings, particularly FC-4%, which demonstrates exceptional superhydrophobicity alongside remarkable chemical durability, wear resistance, adhesion strength, abrasion resistance, water resistance and impermeability.

Originality/value

Through the examination of the interfacial adhesion between FC-X and the concrete substrate, along with an assessment of FC-X’s impact on the water repellency of the concrete, this paper provides valuable insights into the practical application of superhydrophobic coatings in enhancing the durability and performance of concrete materials.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 7 May 2024

Mohammad A. Gharaibeh and Jürgen Wilde

The purpose of this paper is to investigate the thermomechanical response of four well-known lead-free die attach materials: sintered silver, sintered nano-copper particles…

Abstract

Purpose

The purpose of this paper is to investigate the thermomechanical response of four well-known lead-free die attach materials: sintered silver, sintered nano-copper particles, gold-tin solders and silver-tin transient liquid phase (TLP) bonds.

Design/methodology/approach

This examination is conducted through finite element analysis. The mechanical properties of all die attach systems, including elastic and Anand creep parameters, are obtained from relevant literature and incorporated into the numerical analysis. Consequently, the bond stress-strain relationships, stored inelastic strain energies and equivalent plastic strains are thoroughly examined.

Findings

The results indicate that silver-tin TLP bonds are prone to exhibiting higher inelastic strain energy densities, while sintered silver and copper interconnects tend to possess higher levels of plastic strains and deformations. This suggests a higher susceptibility to damage in these metallic die attachments. On the other hand, the more expensive gold-based solders exhibit lower inelastic strain energy densities and plastic strains, implying an improved fatigue performance compared to other bonding configurations.

Originality/value

The utilization of different metallic material systems as die attachments in power electronics necessitates a comprehensive understanding of their thermomechanical behavior. Therefore, the results of the present paper can be useful in the die attach material selection in power electronics.

Details

International Journal of Structural Integrity, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 7 May 2024

Gangting Huang, Qichen Wu, Youbiao Su, Yunfei Li and Shilin Xie

In order to improve the computation efficiency of the four-point rainflow algorithm, a new fast four-point rainflow cycle counting algorithm (FFRA) using a novel loop iteration…

Abstract

Purpose

In order to improve the computation efficiency of the four-point rainflow algorithm, a new fast four-point rainflow cycle counting algorithm (FFRA) using a novel loop iteration mode is proposed.

Design/methodology/approach

In this new algorithm, the loop iteration mode is simplified by reducing the number of iterations, tests and deletions. The high efficiency of the new algorithm makes it a preferable candidate in fatigue life online estimation of structural health monitoring systems.

Findings

The extensive simulation results show that the extracted cycles by the new FFRA are the same as those by the four-point rainflow cycle counting algorithm (FRA) and the three-point rainflow cycle counting algorithm (TRA). Especially, the simulation results indicate that the computation efficiency of the FFRA has improved an average of 12.4 times compared to the FRA and an average of 8.9 times compared to the TRA. Moreover, the equivalence of cycle extraction results between the FFRA and the FRA is proved mathematically by utilizing some fundamental properties of the rainflow algorithm. Theoretical proof of the efficiency improvement of the FFRA in comparison to the FRA is also given.

Originality/value

This merit makes the FFRA preferable in online monitoring systems of structures where fatigue life estimation needs to be accomplished online based on massive measured data. It is noticeable that the high efficiency of the FFRA attributed to the simple loop iteration, which provides beneficial guidance to improve the efficiency of existing algorithms.

Details

Engineering Computations, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 2 May 2024

Yan Pan, Taiyu Jin, Xiaohui Peng, Pengli Zhu and Kyung W. Paik

The purpose of this paper was to investigate how variations in the geometry of silicon chips and the presence of surface defects affect their static bending properties. By…

Abstract

Purpose

The purpose of this paper was to investigate how variations in the geometry of silicon chips and the presence of surface defects affect their static bending properties. By comparing the bending radius and strength across differently sized and treated chips, the study sought to understand the underlying mechanics that contribute to the flexibility of silicon-based electronic devices. This understanding is crucial for the development of advanced, robust and adaptable electronic systems that can withstand the rigors of manufacturing and everyday use.

Design/methodology/approach

This study explores the impact of silicon chip geometry and surface defects on flexibility through a multifaceted experimental approach. The methodology included preparing silicon chips of three distinct dimensions and subjecting them to thinning processes to achieve a uniform thickness verified via scanning electron microscopy (SEM). Finite element method (FEM) simulations and a series of four-point bending tests were used to analyze the bending flexibility theoretically and experimentally. The approach was comprehensive, examining both the intrinsic geometric factors and the extrinsic influence of surface defects induced by manufacturing processes.

Findings

The findings revealed a significant deviation between the theoretical predictions from FEM simulations and the experimental outcomes from the four-point bending tests. Rectangular-shaped chips demonstrated superior flexibility, with smaller dimensions leading to an increased bending strength. Surface defects, identified as critical factors affecting flexibility, were analyzed through SEM and atomic force microscopy, showing that etching processes could reduce defect density and enhance flexibility. Notably, the study concluded that surface defects have a more pronounced impact on silicon chip flexibility than geometric factors, challenging initial assumptions and highlighting the need for defect minimization in chip manufacturing.

Originality/value

This research contributes valuable insights into the design and fabrication of flexible electronic devices, emphasizing the significant role of surface defects over geometric considerations in determining silicon chip flexibility. The originality of the work lies in its holistic approach to dissecting the factors influencing silicon chip flexibility, combining theoretical simulations with practical bending tests and surface defect analysis. The findings underscore the importance of optimizing manufacturing processes to reduce surface defects, thereby paving the way for the creation of more durable and flexible electronic devices for future technologies.

Details

Soldering & Surface Mount Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 7 May 2024

Shuliang Zhao and Junchen Wang

Proximity is a crucial factor influencing innovation collaboration and performance. Most existing studies have primarily focused on the organizational level and been static in…

Abstract

Purpose

Proximity is a crucial factor influencing innovation collaboration and performance. Most existing studies have primarily focused on the organizational level and been static in nature. Therefore, a further study on how proximity affects innovation performance is needed. This paper aims to fill this gap by highlighting the organizational, cognitive and geographical proximity in China’s open regional innovation system.

Design/methodology/approach

This paper analyzes the data from 2010 to 2015 through path analysis.

Findings

The results reveal that geographical proximity has a direct positive effect on regional innovation performance in China’s regional innovation system. It also shows that organizational proximity exerts a negative impact on absorptive capacity, and through it adversely affects regional innovation performance. In contrast, cognitive proximity is found to have a positive effect on absorptive capacity, enhancing regional innovation performance.

Originality/value

Based on these findings, this paper contributes to a better understanding of the role of proximity in innovation collaboration and performance. By highlighting the importance of different proximity types, it provides insights for policymakers and practitioners seeking to foster regional innovation.

Details

Journal of Science and Technology Policy Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2053-4620

Keywords

Article
Publication date: 6 May 2024

Hansu Kim, Luke Crispo, Nicholas Galley, Si Mo Yeon, Yong Son and Il Yong Kim

The lightweight design of aircraft seats can significantly improve fuel efficiency and reduce greenhouse gas emissions. Metal additive manufacturing (MAM) can produce lightweight…

Abstract

Purpose

The lightweight design of aircraft seats can significantly improve fuel efficiency and reduce greenhouse gas emissions. Metal additive manufacturing (MAM) can produce lightweight topology-optimized designs with improved performance, but limited build volume restricts the printing of large components. The purpose of this paper is to design a lightweight aircraft seat leg structure using topology optimization (TO) and MAM with build volume restrictions, while satisfying structural airworthiness certification requirements.

Design/methodology/approach

TO was used to determine a lightweight conceptual design for the seat leg structure. The conceptual design was decomposed to meet the machine build volume, a detailed CAD assembly was designed and print orientation was selected for each component. Static and dynamic verification was performed, the design was updated to meet the structural requirements and a prototype was manufactured.

Findings

The final topology-optimized seat leg structure was decomposed into three parts, yielding a 57% reduction in the number of parts compared to a reference design. In addition, the design achieved an 8.5% mass reduction while satisfying structural requirements for airworthiness certification.

Originality/value

To the best of the authors’ knowledge, this study is the first paper to design an aircraft seat leg structure manufactured with MAM using a rigorous TO approach. The resultant design reduces mass and part count compared to a reference design and is verified with respect to real-world aircraft certification requirements.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Access

Year

Last week (6)

Content type

Earlycite article (6)
1 – 6 of 6