Search results

1 – 2 of 2
Open Access
Article
Publication date: 21 December 2022

Chaduvula Vijaya Lakshmi, Ch. Ravi Kiran, M. Gowrisankar, Shaik Babu and D. Ramachandran

The paper aims to throw light on the interactions taking place between the different chemical compositions at various temperatures. P-methylacetophenone is a polar dissolvable…

Abstract

Purpose

The paper aims to throw light on the interactions taking place between the different chemical compositions at various temperatures. P-methylacetophenone is a polar dissolvable, which is positively related by dipole–dipole co-operations and is exceptionally compelling a direct result of the shortfall of any critical primary impacts because of the absence of hydrogen bonds; hence, it might work an enormous dipole moment (μ = 3.62 D). Alcohols additionally assume a significant part in industries and research facilities as reagents and pull in incredible consideration as helpful solvents in the green innovation. They are utilized as pressure-driven liquids in drugs, beauty care products, aromas, paints removers, flavors, dye stuffs and as a germ-free specialist.

Design/methodology/approach

Mixtures were prepared by mass in airtight ground stopper bottles. The mass measurements were performed on a digital electronic balance (Mettler Toledo AB135, Switzerland) with an uncertainty of ±0.0001 g. The uncertainty in mole fraction was thus estimated to be less than ±0.0001. The densities of pure liquids and their mixtures were determined using a density meter (DDH-2911, Rudolph Research Analytical). The instrument was calibrated frequently using deionized doubly distilled water and dry air. The estimated uncertainty associated with density measurements is ±0.0003 g.cm−3. Viscosities of the pure liquids and their mixtures were determined by using Ostwald’s viscometer. The viscometer was calibrated at each required temperature using doubly distilled water. The viscometer was cleaned, dried and is filled with the sample liquid in a bulb having capacity of 10 ml. The viscometer was then kept in a transparent walled water bath with a thermal stability of ±0.01K for about 20 min to obtain thermal equilibrium. An electronic digital stop watch with an uncertainty of ±0.01 s was used for the flow time measurements for each sample at least four readings were taken and then the average of these was taken.

Findings

Negative values of excess molar volume, excess isentropic compressibility and positive values of deviation in viscosity including excess Gibbs energy of activation of viscous flow at different temperatures (303.15, 308.15 and 313.15 K) may be attribution to the specific intermolecular interactions through the hetero-association interaction between the components of the mixtures, resulting in the formation of associated complexes through hydrogen bond interactions.

Originality/value

The excess molar volume (VE) values were analyzed with the Prigogine–Flory–Patterson theory, which demonstrated that the free volume contribution is the one of the factors influencing negative values of excess molar quantities. The Jouyban–Acree model was used to correlate the experimental values of density, speed of sound and viscosity.

Details

Arab Gulf Journal of Scientific Research, vol. 41 no. 2
Type: Research Article
ISSN: 1985-9899

Keywords

Open Access
Article
Publication date: 13 November 2023

Ming Gao, Anhui Pan, Yi Huang, Jiaqi Wang, Yan Zhang, Xiao Xie, Huanre Han and Yinghua Jia

The type 120 emergency valve is an essential braking component of railway freight trains, but corresponding diaphragms consisting of natural rubber (NR) and chloroprene rubber…

Abstract

Purpose

The type 120 emergency valve is an essential braking component of railway freight trains, but corresponding diaphragms consisting of natural rubber (NR) and chloroprene rubber (CR) exhibit insufficient aging resistance and low-temperature resistance, respectively. In order to develop type 120 emergency valve rubber diaphragms with long-life and high-performance, low-temperatureresistant CR and NR were processed.

Design/methodology/approach

The physical properties of the low-temperature-resistant CR and NR were tested by low-temperature stretching, dynamic mechanical analysis, differential scanning calorimetry and thermogravimetric analysis. Single-valve and single-vehicle tests of type 120 emergency valves were carried out for emergency diaphragms consisting of NR and CR.

Findings

The low-temperature-resistant CR and NR exhibited excellent physical properties. The elasticity and low-temperature resistance of NR were superior to those of CR, whereas the mechanical properties of the two rubbers were similar in the temperature range of 0 °C–150 °C. The NR and CR emergency diaphragms met the requirements of the single-valve test. In the low-temperature single-vehicle test, only the low-temperature sensitivity test of the NR emergency diaphragm met the requirements.

Originality/value

The innovation of this study is that it provides valuable data and experience for future development of type 120 valve rubber diaphragms.

Details

Railway Sciences, vol. 3 no. 1
Type: Research Article
ISSN: 2755-0907

Keywords

Access

Only Open Access

Year

Last 12 months (2)

Content type

1 – 2 of 2