Search results

1 – 10 of 171
Open Access
Article
Publication date: 1 November 2023

Hamed Abdelreheem Ead

The purpose of the paper is to showcase the significant achievements of Egypt's scientists in the 20th century across various fields of study such as medicine, physics, chemistry…

Abstract

Purpose

The purpose of the paper is to showcase the significant achievements of Egypt's scientists in the 20th century across various fields of study such as medicine, physics, chemistry, biology, math, geology, astronomy and engineering. The paper highlights the struggles and successes of these scientists, as well as the cultural, social and political factors that influenced their lives and work. The aim is to inspire young people to pursue careers in science and make their own contributions to society by presenting these scientists as role models for hard work and dedication. Ultimately, the paper seeks to promote the importance of science and its impact on society.

Design/methodology/approach

The purpose of this review is to present the scientific biographies of Egypt's most distinguished scientists, primarily in the field of Natural Sciences, in a balanced and comprehensive manner. The work is objective, honest and abstract, avoiding any bias or exaggeration. The author provides a clear and concise methodology, including a brief introduction to the scientist and their field of study, an explanation of their major contributions, the impact of their work on society, any challenges or obstacles faced during their career and their lasting legacy. The aim is to showcase the important achievements of these scientists, their impact on their respective fields and to inspire future generations to pursue scientific careers.

Findings

The group of outstanding scientists in 20th century Egypt were shaped by various factors, including familial upbringing, education, society, political and cultural atmosphere and state support for scientific research. These scientists made significant contributions to various academic disciplines, including medicine, physics, chemistry, biology, mathematics and engineering. Their impact on their communities and cultures has received international acclaim, making them role models for future generations of scientists and researchers. The history of these scientists highlights the importance of educational investments and supporting scientific research to foster innovation and social progress. The encyclopedia serves as a useful tool for students, instructors and education professionals, preserving Egypt's scientific heritage and honouring the scientists' outstanding accomplishments.

Research limitations/implications

The encyclopedia preserves Egypt's scientific heritage, which has been overlooked for political or other reasons. It is a useful tool for a variety of readers, including students, instructors and education professionals, and it offers insights into universally relevant scientific success factors as well as scientific research methodologies. The encyclopedia honours the outstanding scientific accomplishments of Egyptian researchers and their contributions to the world's scientific community.

Practical implications

The practical implications of this paper are several. First, it highlights the importance of education, family upbringing and societal support for scientific research in fostering innovation and social progress. Second, it underscores the need for continued funding and support for scientific research to maintain and build upon the accomplishments of past generations of scientists. Third, it encourages young people to pursue scientific careers and make their own contributions to society. Fourth, it preserves the scientific heritage of Egypt and honors the contributions of its outstanding scientists. Finally, it serves as a useful tool for students, instructors and education professionals seeking to understand the factors underlying scientific success and research methodologies.

Social implications

The social implications of the paper include promoting national pride and cultural identity, raising awareness of the importance of education and scientific research in driving social progress, inspiring future generations of scientists and researchers, reducing socioeconomic disparities and emphasizing the role of society, politics and culture in shaping scientific researchers' personalities and interests.

Originality/value

The paper's originality/value lies in its comprehensive documentation of the scientific biographies of Egypt's most prominent scientists in the 20th century, providing unique insights into the factors that contributed to their development and their impact across various academic disciplines. It preserves Egypt's scientific heritage and inspires future generations of scientists and researchers through the promotion of educational investments and scientific research. The encyclopedia serves as a useful tool for education professionals seeking to understand scientific success factors and research methodologies, emphasizing the importance of supportive and inclusive environments for scientific development.

Details

Journal of Humanities and Applied Social Sciences, vol. 6 no. 2
Type: Research Article
ISSN: 2632-279X

Keywords

Open Access
Article
Publication date: 30 April 2024

Qiuqin Li and Xuemei Jiang

This article summarizes the international scientific research output of global forest product models, infers future research trends and provides reference for quantitative…

Abstract

Purpose

This article summarizes the international scientific research output of global forest product models, infers future research trends and provides reference for quantitative analysis and mathematical modeling of Chinese forest product problems, with the aim of contributing to promoting domestic production of Chinese forest products and strengthening international trade competitiveness of forest products.

Design/methodology/approach

In 1999, Joseph Buongiorno, a scholar at the University of Wisconsin in the United States of America, proposed the global forest products model (GFPM), which was first applied to research in the global forestry sector. GFPM is a recursive dynamic model based on five assumptions: macroeconomics, local equilibrium, dynamic equilibrium, forest product conversion flow and trade inertia. Using a certain year from 1992 to present as the base period, it simulates and predicts changes in prices, production and import and export trade indicators of 14 forest products in 180 countries (regions) through computer programs. Its advantages lie in covering a wide range of countries and a wide variety of forest products. The data mainly include forest resource data, forest product trade data, and other economic data required by the model, sourced from the Food and Agriculture Organization (FAO) of the United Nations and the World Bank, respectively.

Findings

Compared to international quantitative and modeling research in the field of forest product production and trade, China's related research is not comprehensive and in-depth, and there is not much quantitative and mathematical modeling research, resulting in a significant gap. This article summarizes the international scientific research output of global forest product models, infers future research trends, and provides reference for quantitative analysis and mathematical modeling of Chinese forest product problems, with the aim of contributing to promoting domestic production of Chinese forest products and strengthening international trade competitiveness of forest products.

Originality/value

On the basis of summarizing and analyzing the international scientific research output of GFPM, sorting out the current research status and progress at home and abroad, this article discusses potential research expansion directions in 10 aspects, including the types, yield and quality of domestic forest product production, international trade of forest products, and external impacts on the forestry system, in order to provide new ideas for global forest product model research in China.

Details

Forestry Economics Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2631-3030

Keywords

Article
Publication date: 18 March 2024

Amar Benkhaled, Amina Benkhedda, Braham Benaouda Zouaoui and Soheyb Ribouh

Reducing aircraft fuel consumption has become a paramount research area, focusing on optimizing operational parameters like speed and altitude during the cruise phase. However…

Abstract

Purpose

Reducing aircraft fuel consumption has become a paramount research area, focusing on optimizing operational parameters like speed and altitude during the cruise phase. However, the existing methods for fuel reduction often rely on complex experimental calculations and data extraction from embedded systems, making practical implementation challenging. To address this, this study aims to devise a simple and accessible approach using available information.

Design/methodology/approach

In this paper, a novel analytic method to estimate and optimize fuel consumption for aircraft equipped with jet engines is proposed, with a particular emphasis on speed and altitude parameters. The dynamic variations in weight caused by fuel consumption during flight are also accounted for. The derived fuel consumption equation was rigorously validated by applying it to the Boeing 737–700 and comparing the results against the fuel consumption reference tables provided in the Boeing manual. Remarkably, the equation yielded closely aligned outcomes across various altitudes studied. In the second part of this paper, a pioneering approach is introduced by leveraging the particle swarm optimization algorithm (PSO). This novel application of PSO allows us to explore the equation’s potential in finding the optimal altitude and speed for an actual flight from Algiers to Brussels.

Findings

The results demonstrate that using the main findings of this study, including the innovative equation and the application of PSO, significantly simplifies and expedites the process of determining the ideal parameters, showcasing the practical applicability of the approach.

Research limitations/implications

The suggested methodology stands out for its simplicity and practicality, particularly when compared to alternative approaches, owing to the ready availability of data for utilization. Nevertheless, its applicability is limited in scenarios where zero wind effects are a prevailing factor.

Originality/value

The research opens up new possibilities for fuel-efficient aviation, with a particular focus on the development of a unique fuel consumption equation and the pioneering use of the PSO algorithm for optimizing flight parameters. This study’s accessible approach can pave the way for more environmentally conscious and economical flight operations.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 1 March 2023

Hossein Shakibaei, Mohammad Reza Farhadi-Ramin, Mohammad Alipour-Vaezi, Amir Aghsami and Masoud Rabbani

Every day, small and big incidents happen all over the world, and given the human, financial and spiritual damage they cause, proper planning should be sought to deal with them so…

Abstract

Purpose

Every day, small and big incidents happen all over the world, and given the human, financial and spiritual damage they cause, proper planning should be sought to deal with them so they can be appropriately managed in times of crisis. This study aims to examine humanitarian supply chain models.

Design/methodology/approach

A new model is developed to pursue the necessary relations in an optimal way that will minimize human, financial and moral losses. In this developed model, in order to optimize the problem and minimize the amount of human and financial losses, the following subjects have been applied: magnitude of the areas in which an accident may occur as obtained by multiple attribute decision-making methods, the distances between relief centers, the number of available rescuers, the number of rescuers required and the risk level of each patient which is determined using previous data and machine learning (ML) algorithms.

Findings

For this purpose, a case study in the east of Tehran has been conducted. According to the results obtained from the algorithms, problem modeling and case study, the accuracy of the proposed model is evaluated very well.

Originality/value

Obtaining each injured person's priority using ML techniques and each area's importance or risk level, besides developing a bi-objective mathematical model and using multiple attribute decision-making methods, make this study unique among very few studies that concern ML in the humanitarian supply chain. Moreover, the findings validate the results and the model's functionality very well.

Article
Publication date: 30 April 2024

Farooq H. Ali, Mushtaq F. Almensoury, Atheer Saad Hashim, Qusay Rasheed Al-Amir, Hameed K. Hamzah and M. Hatami

This paper aims to study the effect of concentric hot circular cylinder inside egg-cavity porous-copper nanofluid on natural convection phenomena.

Abstract

Purpose

This paper aims to study the effect of concentric hot circular cylinder inside egg-cavity porous-copper nanofluid on natural convection phenomena.

Design/methodology/approach

The finite element method–based Galerkin approach is applied to solve numerically the set of governing equations with appropriate boundary conditions.

Findings

The effects of different range parameters, such as Darcy number (10–3 = Da = 10–1), Rayleigh number (103 = Ra = 106), nanoparticle volume fraction (0 = ϑ = 0.06) and eccentricity (−0.3 = e = 0.1) on the fluid flow represent by stream function and heat transfer represent by temperature distribution, local and average Nusselt numbers.

Research limitations/implications

A comparison between oval shape and concentric circular concentric cylinder was investigated.

Originality/value

In the current numerical study, heat transfer by natural convection was identified inside the new design of egg-shaped cavity as a result of the presence of a circular inside it supported by a porous medium filled with a nanofluid. After reviewing previous studies and considering the importance of heat transfer by free convection inside tubes for many applications, to the best of the authors’ knowledge, the current work is the first study that deals with a study and comparison between the common shape (concentric circular tubes) and the new shape (egg-shaped cavity).

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Abstract

Details

Journal of Global Operations and Strategic Sourcing, vol. 17 no. 2
Type: Research Article
ISSN: 2398-5364

Article
Publication date: 1 June 2023

Satish Kumar, Arun Gupta, Anish Kumar, Pankaj Chandna and Gian Bhushan

Milling is a flexible creation process for the manufacturing of dies and aeronautical parts. While machining thin-walled parts, heat generation during machining essentially…

Abstract

Purpose

Milling is a flexible creation process for the manufacturing of dies and aeronautical parts. While machining thin-walled parts, heat generation during machining essentially affects the accuracy. The workpiece temperature (WT), as well as the responses like material removal rate (MRR) and surface roughness (SR) for input parameters like cutting speed (CS), feed rate (F), depth-of-cut (DOC), step over (SO) and tool diameter (TD), becomes critical for sustaining the accuracy of the thin walls.

Design/methodology/approach

Response surface methodology was used to make 46 tests. To convert the multi-character problem into a single-character problem, the weightage was assessed using the entropy approach and the grey relational coefficient (GRC) was determined. To investigate the connection among input parameters and single-objective (GRC), a fuzzy mathematical modelling technique was used. The optimal performance of process parameters was estimated by grey relational entropy grade (GREG)-fuzzy and genetic algorithm (GA) optimization.

Findings

SR was found to be a significant process parameter, with CS, feed and DOC, respectively. Similarly, F, DOC and TD were found to be significant process parameters with MRR, respectively, and F, DOC, SO and TD were found to be significant process parameters with WT, respectively. GREG-fuzzy-GA found more suitable for minimizing the WT with the constraint s of SR and MRR and provide maximum desirability of 0.665. The projected and experimental values have a good agreement, with a standard error of 5.85%, and so the responses predicted by the suggested method are better optimized.

Originality/value

The GREG-fuzzy-GA is a new hybrid technique for analysing Inconel625 behaviour during machining in a 2.5D milling process.

Details

World Journal of Engineering, vol. 21 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 29 April 2024

Surath Ghosh

Financial mathematics is one of the most rapidly evolving fields in today’s banking and cooperative industries. In the current study, a new fractional differentiation operator…

Abstract

Purpose

Financial mathematics is one of the most rapidly evolving fields in today’s banking and cooperative industries. In the current study, a new fractional differentiation operator with a nonsingular kernel based on the Robotnov fractional exponential function (RFEF) is considered for the Black–Scholes model, which is the most important model in finance. For simulations, homotopy perturbation and the Laplace transform are used and the obtained solutions are expressed in terms of the generalized Mittag-Leffler function (MLF).

Design/methodology/approach

The homotopy perturbation method (HPM) with the help of the Laplace transform is presented here to check the behaviours of the solutions of the Black–Scholes model. HPM is well known for its accuracy and simplicity.

Findings

In this attempt, the exact solutions to a famous financial market problem, namely, the BS option pricing model, are obtained using homotopy perturbation and the LT method, where the fractional derivative is taken in a new YAC sense. We obtained solutions for each financial market problem in terms of the generalized Mittag-Leffler function.

Originality/value

The Black–Scholes model is presented using a new kind of operator, the Yang-Abdel-Aty-Cattani (YAC) operator. That is a new concept. The revised model is solved using a well-known semi-analytic technique, the homotopy perturbation method (HPM), with the help of the Laplace transform. Also, the obtained solutions are compared with the exact solutions to prove the effectiveness of the proposed work. The different characteristics of the solutions are investigated for different values of fractional-order derivatives.

Details

Engineering Computations, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 28 July 2022

Ashis Mitra

Cotton fibre lots are graded and selected for yarn spinning based on their quality value which is a function of certain fibre properties. Cotton grading and selection has created…

Abstract

Purpose

Cotton fibre lots are graded and selected for yarn spinning based on their quality value which is a function of certain fibre properties. Cotton grading and selection has created a domain of emerging interest among the researchers. Several researchers have addressed the said issue using a few exponents of multi-criteria decision-making (MCDM) technique. The purpose of this study is to demonstrate a cotton selection problem using a recently developed measurement of alternatives and ranking according to compromise solution (MARCOS) method which can handle almost any decision problem involving a finite number of alternatives and multiple conflicting decision criteria.

Design/methodology/approach

The MARCOS method of the MCDM technique was deployed in this study to rank 17 cotton fibre lots based on their quality values. Six apposite fibre properties, namely, fibre bundle strength, elongation, fineness, upper half mean length, uniformity index and short fibre content are considered as the six decision criteria assigning weights previously determined by an earlier researcher using analytic hierarchy process.

Findings

Among the 17 alternatives, C9 secured rank 1 (the best lot) with the highest utility function (0.704) and C7 occupied rank 17 (the worst lot) with the lowest utility function (0.596). Ranking given by MARCOS method showed high degree of congruence with the earlier approaches, as evidenced by high rank correlation coefficients (Rs > 0.814). During sensitivity analyses, no occurrence of rank reversal is observed. The correlations between the quality value-based ranking and the yarn tenacity-based rankings are better than many of the traditional methods. The results can be improved further by adopting other efficient method of weighting the criteria.

Practical implications

The properties of raw cotton have significant impact on the quality of final yarn. Compared to the traditional methods, MCDM is reported as the most viable solution in which fibre parameters are given their due importance while formulating a single index known as quality value. The present study demonstrates the application of a recently developed exponent of MCDM in the name of MARCOS for the first time to address a cotton fibre selection problem for textile spinning mills. The same approach can also be extended to solve other decision problems of the textile industry, in general.

Originality/value

Novelty of the present study lies in the fact that the MARCOS is a very recently developed MCDM method, and this is a maiden application of the MARCOS method in the domain of textile, in general, and cotton industry, in particular. The approach is very simple, highly effective and quite flexible in terms of number of alternatives and decision criteria, although highly robust and stable.

Details

Research Journal of Textile and Apparel, vol. 28 no. 2
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 7 December 2022

Ahmed Mohammed, Tarek Zayed, Fuzhan Nasiri and Ashutosh Bagchi

This paper extends the authors’ previous research work investigating resilience for municipal infrastructure from an asset management perspective. Therefore, this paper aims to…

Abstract

Purpose

This paper extends the authors’ previous research work investigating resilience for municipal infrastructure from an asset management perspective. Therefore, this paper aims to formulate a pavement resilience index while incorporating asset management and the associated resilience indicators from the authors’ previous research work.

Design/methodology/approach

This paper introduces a set of holistic-based key indicators that reflect municipal infrastructure resiliency. Thenceforth, the indicators were integrated using the weighted sum mean method to form the proposed resilience index. Resilience indicators weights were determined using principal components analysis (PCA) via IBM SPSS®. The developed framework for the PCA was built based on an optimization model output to generate the required weights for the desired resilience index. The output optimization data were adjusted using the standardization method before performing PCA.

Findings

This paper offers a mathematical approach to generating a resilience index for municipal infrastructure. The statistical tests conducted throughout the study showed a high significance level. Therefore, using PCA was proper for the resilience indicators data. The proposed framework is beneficial for asset management experts, where introducing the proposed index will provide ease of use to decision-makers regarding pavement network maintenance planning.

Research limitations/implications

The resilience indicators used need to be updated beyond what is mentioned in this paper to include asset redundancy and structural asset capacity. Using clustering as a validation tool is an excellent opportunity for other researchers to examine the resilience index for each pavement corridor individually pertaining to the resulting clusters.

Originality/value

This paper provides a unique example of integrating resilience and asset management concepts and serves as a vital step toward a comprehensive integration approach between the two concepts. The used PCA framework offers dynamic resilience indicators weights and, therefore, a dynamic resilience index. Resiliency is a dynamic feature for infrastructure systems. It differs during their life cycle with the change in maintenance and rehabilitation plans, systems retrofit and the occurring disruptive events throughout their life cycle. Therefore, the PCA technique was the preferred method used where it is data-based oriented and eliminates the subjectivity while driving indicators weights.

Details

Construction Innovation , vol. 24 no. 3
Type: Research Article
ISSN: 1471-4175

Keywords

1 – 10 of 171