Search results

11 – 20 of over 15000
Article
Publication date: 1 September 2006

Manuel Julio García Ruíz and Leidy Yarime Suárez González

This work presents a review of the application of hyperelastic models to the analysis of fabrics using finite element analysis (FEA).

8530

Abstract

Purpose

This work presents a review of the application of hyperelastic models to the analysis of fabrics using finite element analysis (FEA).

Design/methodology/approach

In general, a combination of uniaxial tension (compression), biaxial tension, and simple shear is required for the characterization of a hyperelastic material. However, the use of these deformation tests to obtain the mechanical properties of a fabric may be complicated and also expensive. A methodology for characterizing the fabric employing a different experimental test is presented. The methodology consists of a comparison of the results of the fabric characterization with only a tensile test and the combination of shear, biaxial, and tension experimental tests by using FEA.

Findings

Numerical results of the fabric behavior contribute to estimate the effects of experimental limitations in the material characterization and to select the best fit material model to modeling fabrics. Finally, a comparison of hyperelastic material models is illustrated through an example of a rigid body in contact with a hyperelastic fabric in 3D.

Originality/value

Hyperelastic models are used to characterize textile materials.

Details

International Journal of Clothing Science and Technology, vol. 18 no. 5
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 3 October 2023

Roberto Junior Algarín Roncallo, Luis Lisandro Lopez Taborda and Diego Guillen

The purpose of this research is present an experimental and numerical study of the mechanical properties of the acrylonitrile butadiene styrene (ABS) in the additive manufacturing…

Abstract

Purpose

The purpose of this research is present an experimental and numerical study of the mechanical properties of the acrylonitrile butadiene styrene (ABS) in the additive manufacturing (AM) by fused filament fabrication (FFF). The characterization and mechanical models obtained are used to predict the elastic behavior of a prosthetic foot and the failure of a prosthetic knee manufactured with FFF.

Design/methodology/approach

Tension tests were carried out and the elastic modulus, yield stress and tensile strength were evaluated for different material directions. The material elastic constants were determined and the influence of infill density in the mechanical strength was evaluated. Yield surfaces and failure criteria were generated from the tests. Failures over prosthetic elements in tridimensional stresses were analyzed; the cases were evaluated via finite element method.

Findings

The experimental results show that the material is transversely isotropic. The elasticity modulus, yield stress and ultimate tensile strength vary linearly with the infill density. The stresses and the failure criteria were computed and compared with the experimental tests with good agreement.

Practical implications

This research can be applied to predict failures and improve reliability in FFF or fused deposition modeling (FDM) products for applications in high-performance industries such as aerospace, automotive and medical.

Social implications

This research aims to promote its widespread adoption in the industrial and medical sectors by increasing reliability in products manufactured with AM based on the failure criterion.

Originality/value

Most of the models studied apply to plane stress situations and standardized specimens of printed material. However, the models applied in this study can be used for functional parts and three-dimensional stress, with accuracy in the range of that obtained by other researchers. The researchers also proposed a method for the mechanical study of fragile materials fabricated by processes of FFF and FDM.

Article
Publication date: 26 October 2021

Cecilia Carlorosi, Chiara Giosuè, Van Anh Le Ngoc, Alessandra Mobili, Thi Nguyen Vu Trong, Phung Nguyen Huu Long, Fausto Pugnaloni and Francesca Tittarelli

This paper presents the outcomes of the international project “Protecting Landscape Heritage: a requalification project as an instrument for the re-birth of Quang Tri Old Citadel…

Abstract

Purpose

This paper presents the outcomes of the international project “Protecting Landscape Heritage: a requalification project as an instrument for the re-birth of Quang Tri Old Citadel in Vietnam”, achieved with scientific cooperation between the Università Politecnica delle Marche (Italy) and Hue University of Sciences (Vietnam) funded by the Italian Ministry of Foreign Affairs and International Cooperation and Ministry of Science and Technology of Vietnam. The research focuses on the Quang Tri Citadel, founded in 1809 and now in an advanced state of degradation.

Design/methodology/approach

For the purpose of rehabilitation, the wide multidisciplinary project first examined the historical context of the military model, the architectural aspects of the structure, the characterization of the existing materials, the degradation levels of different parts, and, finally, a proposal of the suggested interventions.

Findings

The original structure and geometry were extrapolated and studied. Building materials were produced with nearby raw materials. Firing temperatures of bricks ranged from 800 to 1,000 °C, hydraulic lime was supposed the binder of the mortar with a calcination temperature lower than 1,000 °C. Damage assessment was provided and after these analyses a requalification project was proposed so the cultural heritage can play a role for the future in the dialog between different cultures.

Originality/value

The requalification project achieved by an integrated analytical approach defines aspects in relation to the restoration of the structures, enabling compliance with the geometry, techniques, building materials used in the original construction and allowing its guardianship and management to align with the historical context of the architectural heritage.

Details

Journal of Cultural Heritage Management and Sustainable Development, vol. 13 no. 4
Type: Research Article
ISSN: 2044-1266

Keywords

Article
Publication date: 9 March 2010

G. Berti, L. D'Angelo, A. Gatto and L. Iuliano

This paper aims to develop a deep characterization of PA‐Al2O3 composite for selective laser sintering (SLS). Tension test is used to determine main mechanical characteristics of…

1510

Abstract

Purpose

This paper aims to develop a deep characterization of PA‐Al2O3 composite for selective laser sintering (SLS). Tension test is used to determine main mechanical characteristics of the material, both at room temperature and at 100°C. An accurate knowledge of the parts' performances as a function of the building orientation, is fundamental to understand the manufacturing anisotropy. Particular attention is dedicated to the joining and failure micromechanisms ruling the macroscopic characteristics, on the basis of the knowledge developed by the authors on SLS of both metal and polymeric powders.

Design/methodology/approach

Specimens have been built with different orientations in regard to powder deposition plane and laser path. Tension test is used to determine main mechanical characteristics of the material, both at room temperature and at 100°C. A particular attention is dedicated to the joining and failure micromechanisms ruling the macroscopic characteristics of the composite material by means of optical and scanning electron microscope (SEM) observations.

Findings

The sintered material shows an evident anisotropy in the growth direction (z‐axis), as well as it seems to be not sensitive to the sintering direction at room temperature (x, y, xy). At 100°C the effect of sintering direction becomes more evident and a different behaviour results considering x‐ and y‐direction, respectively. Accurate SEM characterization has been carried out to understand the effect of the manufacturing anisotropy on the mechanical performances, both in terms of additive construction and laser sintering strategy. The observation of the rupture surfaces showed that cracks originate from the external surface and propagate initially by the ductile failure of the polymeric matrix, up to the sudden fracture of the whole section.

Originality/value

Previous studies concerning polyamide charged parts confirm the importance of fabrication parameters and geometry on the final performances, due to anisotropic heat supply and transfer phenomena. The originality of the paper is in the investigation on both at room temperature and at 100°C. Moreover, a model is proposed where it is hypothesized that the layer‐by‐layer construction is only marginally responsible of the anisotropic behaviour of the material.

Details

Rapid Prototyping Journal, vol. 16 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 12 March 2018

Albert E. Patterson, Parvathavadhani Bahumanyam, Raghu Katragadda and Sherri L. Messimer

A useful potential application of additive manufacturing (AM) techniques is in automated assembly of existing discrete parts via printing of new material onto two or more parts…

Abstract

Purpose

A useful potential application of additive manufacturing (AM) techniques is in automated assembly of existing discrete parts via printing of new material onto two or more parts simultaneously to form joints between them. The purpose of this paper is to explore the concept of extrusion-based AM for automated assembly, examine potential concerns and perform validation to test the feasibility and value of such an assembly method.

Design/methodology/approach

To validate the theory and address potential concerns, six factorial-designed sets of joined ABS, PETG and PLA samples were manufactured and tensile tested. Each set contained two replications of four samples and was a unique part-joint material combination. To better interpret the results, a new static material characterization was completed on the materials used, as well as joint tests using four mechanical and chemical methods for each material. In total, 69 test articles were examined.

Findings

The tests showed that the joints were effective and strong, even under the inherently eccentric geometry. While there was some variance between replications, in almost every case, the AM joints were found to be equal or superior to those made by traditional methods. ANOVA showed variance in which factors were significant between sets, but all cases were shown to satisfy the Fisher Assumptions at a significance of a = 0.10.

Originality/value

This paper develops and validates a new application of extrusion-based AM. When developed further, this application is expected to increase the commercial application range and industrial efficiency of fused deposition modeling and AM in general. The results of this study should provide a link between traditional automated assembly methods and AM. This paper also provides some original AM material characterization data and observations on material behavior under eccentric loading.

Details

Rapid Prototyping Journal, vol. 24 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 21 June 2024

Francesco Bandinelli, Martina Scapin and Lorenzo Peroni

Finite element (FE) analysis can be used for both design and verification of components. In the case of 3D-printed materials, a proper characterization of properties, accounting…

416

Abstract

Purpose

Finite element (FE) analysis can be used for both design and verification of components. In the case of 3D-printed materials, a proper characterization of properties, accounting for anisotropy and raster angles, can help develop efficient material models. This study aims to use compression tests to characterize short carbon-reinforced PA12 made by fused filament fabrication (FFF) and to model its behaviour by the FE method.

Design/methodology/approach

In this work, the authors focus on compression tests, using post-processed specimens to overcome external defects introduced by the FFF process. The material’s elastoplastic mechanical behaviour is modelled by an elastic stiffness matrix, Hill’s anisotropic yield criterion and Voce’s isotropic hardening law, considering the stacking sequence of raster angles. A FE analysis is conducted to reproduce the material’s compressive behaviour through the LS-DYNA software.

Findings

The proposed model can capture stress values at different deformation levels and peculiar aspects of deformed shapes until the onset of damage mechanisms. Deformation and damage mechanisms are strictly correlated to orientation and raster angle.

Originality/value

The paper aims to contribute to the understanding of 3D-printed material’s behaviour through compression tests on bulk 3D-printed material. The methodology proposed, enriched with an anisotropic damage criterion, could be effectively used for design and verification purposes in the field of 3D-printed components through FE analysis.

Details

Rapid Prototyping Journal, vol. 30 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 20 November 2007

George K. Stylios

Examines the thirteenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects…

1577

Abstract

Examines the thirteenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects discussed include cotton fabric processing, asbestos substitutes, textile adjuncts to cardiovascular surgery, wet textile processes, hand evaluation, nanotechnology, thermoplastic composites, robotic ironing, protective clothing (agricultural and industrial), ecological aspects of fibre properties – to name but a few! There would appear to be no limit to the future potential for textile applications.

Details

International Journal of Clothing Science and Technology, vol. 19 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Content available
Article
Publication date: 1 June 2001

40

Abstract

Details

Pigment & Resin Technology, vol. 30 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 25 October 2018

Dylan Agius, Kyriakos I. Kourousis and Chris Wallbrink

The purpose of this paper is to examine the mechanical behaviour of additively manufactured Ti-6Al-4V under cyclic loading. Using as-built selective laser melting (SLM) Ti-6Al-4V…

Abstract

Purpose

The purpose of this paper is to examine the mechanical behaviour of additively manufactured Ti-6Al-4V under cyclic loading. Using as-built selective laser melting (SLM) Ti-6Al-4V in engineering applications requires a detailed understanding of its elastoplastic behaviour. This preliminary study intends to create a better understanding on the cyclic plasticity phenomena exhibited by this material under symmetric and asymmetric strain-controlled cyclic loading.

Design/methodology/approach

This paper investigates experimentally the cyclic elastoplastic behaviour of as-built SLM Ti-6Al-4V under symmetric and asymmetric strain-controlled loading histories and compares it to that of wrought Ti-6Al-4V. Moreover, a plasticity model has been customised to simulate effectively the mechanical behaviour of the as-built SLM Ti-6Al-4V. This model is formulated to account for the SLM Ti-6Al-4V-specific characteristics, under the strain-controlled experiments.

Findings

The elastoplastic behaviour of the as-built SLM Ti-6Al-4V has been compared to that of the wrought material, enabling characterisation of the cyclic transient phenomena under symmetric and asymmetric strain-controlled loadings. The test results have identified a difference in the strain-controlled cyclic phenomena in the as-build SLM Ti-6Al-4V when compared to its wrought counterpart, because of a difference in their microstructure. The plasticity model offers accurate simulation of the observed experimental behaviour in the SLM material.

Research limitations/implications

Further investigation through a more extensive test campaign involving a wider set of strain-controlled loading cases, including multiaxial (biaxial) histories, is required for a more complete characterisation of the material performance.

Originality/value

The present investigation offers an advancement in the knowledge of cyclic transient effects exhibited by a typical α’ martensite SLM Ti-6Al-4V under symmetric and asymmetric strain-controlled tests. The research data and findings reported are among the very few reported so far in the literature.

Details

Rapid Prototyping Journal, vol. 24 no. 9
Type: Research Article
ISSN: 1355-2546

Keywords

Content available
Article
Publication date: 1 January 2006

119

Abstract

Details

Anti-Corrosion Methods and Materials, vol. 53 no. 1
Type: Research Article
ISSN: 0003-5599

Keywords

11 – 20 of over 15000