Search results

1 – 10 of over 183000
Article
Publication date: 11 June 2024

Haifei Zheng, Yanguo Yin, Rongrong Li, Cong Liu and Qi Chen

This paper aims to investigate the effect of chemical nickel plating and mechanical alloying on the mechanical and tribological properties of FeS/iron-based self-lubricating…

Abstract

Purpose

This paper aims to investigate the effect of chemical nickel plating and mechanical alloying on the mechanical and tribological properties of FeS/iron-based self-lubricating materials as well as the wear mechanism of the materials.

Design/methodology/approach

Surface modification of FeS powder was carried out by chemical nickel plating method and mechanical alloying of mixed powder by ball milling. The mechanical properties of the material were tested by tribological testing by M-200 ring block type friction and wear tester. Optical microscope was used to observe the surface morphology of the material and the transfer film on the surface of the mate parts, and scanning electron microscope and EDS were used to characterize the wear surface.

Findings

Mechanical alloying ball milling was carried out so that the lubricating particles in the matrix are uniformly dispersed; nickel-plated layer enhances the interfacial bonding of FeS and the matrix, and the combination of the two improves the mechanical properties of the material, and at the same time the friction side of the surface of the lubrication of FeS lubricant transfer film formed is denser and more intact, and the friction coefficient of friction side and the wear rate of the material have been greatly reduced.

Originality/value

This work aims to improve the mechanical and tribological properties of FeS/iron-based self-lubricating materials and to provide a reference for the preparation of materials with excellent overall properties.

Details

Industrial Lubrication and Tribology, vol. 76 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 22 January 2024

Cong Liu, Yanguo Yin and Rongrong Li

This study aims to investigate the effects of ball–material ratio on the properties of mixed powders and Cu-Bi self-lubricating alloy materials.

Abstract

Purpose

This study aims to investigate the effects of ball–material ratio on the properties of mixed powders and Cu-Bi self-lubricating alloy materials.

Design/methodology/approach

Cu-Bi mixed powder was ball milled at different ball–material ratios, and the preparation of Cu-Bi alloy materials was achieved through powder metallurgy technology. Scanning electron microscopy, X-ray diffraction and Raman spectroscopy were conducted to study the microstructure and phase composition of the mixed powder. The apparent density and flow characteristics of mixed powders were investigated using a Hall flowmeter. Tests on the crushing strength, impact toughness and tribological properties of self-lubricating alloy materials were conducted using a universal electronic testing machine, 300 J pendulum impact testing machine and M200 ring-block tribometer, respectively.

Findings

With the increase in ball–material ratio, the spherical copper matrix particles in the mixed powder became lamellar, the mechanical properties of the material gradually reduced, the friction coefficient of the material first decreased and then stabilized and the wear rate decreased initially and then increased. The increase in the ball–material ratio resulted in the fine network distribution of the Bi phase in the copper alloy matrix, which benefitted its enrichment on the worn surface for the formation a lubricating film and improvement of the material’s tribological performance. However, a large ball–material ratio can excessively weaken the mechanical properties of the material and reduce its wear resistance.

Originality/value

The effects of ball–material ratio on Cu-Bi mixed powder and material properties were clarified. This work provides a reference for the mechanical alloying process and its engineering applications.

Details

Industrial Lubrication and Tribology, vol. 76 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 22 August 2024

Binghai Zhou and Mingda Wen

Owing to the finite nature of the boundary of the line (BOL), the conventional method, involving the strong matching of single-variety parts with storage locations at the…

Abstract

Purpose

Owing to the finite nature of the boundary of the line (BOL), the conventional method, involving the strong matching of single-variety parts with storage locations at the periphery of the line, proves insufficient for mixed-model assembly lines (MMAL). Consequently, this paper aims to introduce a material distribution scheduling problem considering the shared storage area (MDSPSSA). To address the inherent trade-off requirement of achieving both just-in-time efficiency and energy savings, a mathematical model is developed with the bi-objectives of minimizing line-side inventory and energy consumption.

Design/methodology/approach

A nondominated and multipopulation multiobjective grasshopper optimization algorithm (NM-MOGOA) is proposed to address the medium-to-large-scale problem associated with MDSPSSA. This algorithm combines elements from the grasshopper optimization algorithm and the nondominated sorting genetic algorithm-II. The multipopulation and coevolutionary strategy, chaotic mapping and two further optimization operators are used to enhance the overall solution quality.

Findings

Finally, the algorithm performance is evaluated by comparing NM-MOGOA with multi-objective grey wolf optimizer, multiobjective equilibrium optimizer and multi-objective atomic orbital search. The experimental findings substantiate the efficacy of NM-MOGOA, demonstrating its promise as a robust solution when confronted with the challenges posed by the MDSPSSA in MMALs.

Originality/value

The material distribution system devised in this paper takes into account the establishment of shared material storage areas between adjacent workstations. It permits the undifferentiated storage of various part types in fixed BOL areas. Concurrently, the innovative NM-MOGOA algorithm serves as the core of the system, supporting the formulation of scheduling plans.

Article
Publication date: 2 July 2024

Théodore Cherrière, Sami Hlioui, François Louf and Luc Laurent

This study aims to propose a general methodology to handle multimaterial filtering for density-based topology optimization containing periodic or antiperiodic boundary conditions…

Abstract

Purpose

This study aims to propose a general methodology to handle multimaterial filtering for density-based topology optimization containing periodic or antiperiodic boundary conditions, which are expected to reduce the simulation time of electrical machines. The optimization of the material distribution in a permanent magnet synchronous machine rotor illustrates the relevance of this approach.

Design/methodology/approach

The optimization algorithm relies on an augmented Lagrangian with a projected gradient descent. The 2D finite element method computes the physical and adjoint states to evaluate the objective function and its sensitivities. Concerning regularization, a mathematical development leads to a multimaterial convolution filtering methodology that is consistent with the boundary conditions and helps eliminate artifacts.

Findings

The method behaves as expected and shows the superiority of multimaterial topology optimization over bimaterial topology optimization for the chosen test case. Unlike the standard approach that uses a cropped convolution kernel, the proposed methodology does not artificially reflect the limits of the simulation domain in the optimized material distribution.

Originality/value

Although filtering is a standard tool in topology optimization, no attention has previously been paid to the influence of periodic or antiperiodic boundary conditions when dealing with different natures of materials. The comparison between the bimaterial and multimaterial topology optimization of a permanent magnet machine rotor without symmetry constraints constitutes another originality of this work.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 43 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 2 August 2024

Lotte Hallez, Bram Spruyt, Filip Boen and Tim Smits

This study investigates the combined impact of two packaging cues (i.e. packaging material, recycled content claim) and a price premium on young consumers’ product perceptions and…

Abstract

Purpose

This study investigates the combined impact of two packaging cues (i.e. packaging material, recycled content claim) and a price premium on young consumers’ product perceptions and choices.

Design/methodology/approach

Experimental data were collected online via a questionnaire and a hypothetical choice task completed by 221 young consumers (i.e. 19–25 years). We manipulated two packaging cues for a liquid food product: the packaging material (glass vs plastic) and the presence (vs absence) of a recycled content claim (i.e. 100% recycled). We also manipulated whether a price premium was attached to these packaging variations.

Findings

The packaging material and the claim both had a significant influence on young consumers’ sustainability perceptions, and these perceptions extended to perceptions of various product attributes (e.g. healthiness, quality). When all products cost the same, participants were more likely to choose a glass bottle (i.e. 81%) than a plastic bottle, and a bottle with the recycled content claim (i.e. 79%) than a bottle without this claim. However, these preferences dropped significantly when a price premium was attached to these packaging variations.

Originality/value

While most studies have relied on surveys and qualitative methods to investigate consumers’ reactions to sustainable packaging, our research uses an experimental method to assess how packaging impacts young consumers’ perceptions and choices. Additionally, by manipulating the presence of a price premium, this study uniquely investigates the impact of such a premium on young consumers' willingness to choose sustainable packaging.

Details

British Food Journal, vol. 126 no. 9
Type: Research Article
ISSN: 0007-070X

Keywords

Article
Publication date: 30 July 2024

Aliaksei Petsiuk, Brandon Bloch, Mitch Debora and Joshua M. Pearce

Presently in multicolor fused filament-based three-dimensional (3-D) printing, significant amounts of waste material are produced through nozzle priming and purging each time a…

Abstract

Purpose

Presently in multicolor fused filament-based three-dimensional (3-D) printing, significant amounts of waste material are produced through nozzle priming and purging each time a change from one color to another occurs. G-code generating slicing software typically changes the material on each layer resulting in wipe towers with greater mass than the target object. The purpose of this study is to provide an alternative fabrication approach based on interlayer tool clustering (ITC) for the first time, which reduces the number of tool changes and is compatible with any commercial 3-D printer without the need for hardware modifications.

Design/methodology/approach

The authors have developed an open-source PrusaSlicer upgrade, compatible with Slic3r-based software, which uses the described algorithm to generate g-code toolpath and print experimental objects. The theoretical time, material and energy savings are calculated and validated to evaluate the proposed fabrication method qualitatively and quantitatively.

Findings

The experimental results show the novel ITC method can significantly increase the efficiency of multimaterial printing, with an average 1.7-fold reduction in material use, and an average 1.4-fold reduction in both time and 3-D printing energy use. In addition, this approach reduces the likelihood of technical failures in the manufacturing of the entire part by reducing the number of tool changes, or material transitions, on average by 2.4 times.

Originality/value

The obtained results support distributed recycling and additive manufacturing, which has both environmental and economic benefits and increasing the number of colors in a 3-D print increases manufacturing savings.

Details

Rapid Prototyping Journal, vol. 30 no. 8
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 12 July 2024

María Higueras, Ana Carrasco-Huertas, Ana Isabel Calero-Castillo, Manuel Moreno Alcaide and Francisco José Collado Montero

This paper aims to study the suitability of a selection of 3D printing liquid photopolymer resins for their application in the cultural heritage context.

Abstract

Purpose

This paper aims to study the suitability of a selection of 3D printing liquid photopolymer resins for their application in the cultural heritage context.

Design/methodology/approach

The main concerns regarding the conservation and restoration of cultural assets are the chemical composition and long-term behavior of the new materials that will be in contact with the original object. Because of this, four different LED curing resins were exposed to an accelerated aging procedure and tested to identify the materials which demonstrated a better result. Some specific properties of the material (color, glossiness, pH and volatile organic compound emissions) were measured before and after the exposure.

Findings

Some of the properties measured reported good results demonstrating a decent stability against the selected aging conditions. The main changes were produced in the colorimetric aspect, probably indicating other chemical reactions in the material. Likewise, a case study could be also executed to demonstrate the usefulness of these materials in the cultural field.

Research limitations/implications

It is necessary to study in more detail the long-lasting behavior of the materials employed with these technologies. Further analysis should be carried out highlighting the chemical composition and degradation process of the materials proposed.

Originality/value

This paper contributes to the introduction of curing 3D printing resins in the restoration methodologies of cultural assets. For this, the study of a selection of properties represents the first stage to suggest or reject their use.

Details

Rapid Prototyping Journal, vol. 30 no. 7
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 11 July 2024

Junqiang Li, Haohui Xin, Youyou Zhang, Qinglin Gao and Hengyu Zhang

In order to achieve the desired macroscopic mechanical properties of woven fiber reinforced polymer (FRP) materials, it is necessary to conduct a detailed analysis of their…

Abstract

Purpose

In order to achieve the desired macroscopic mechanical properties of woven fiber reinforced polymer (FRP) materials, it is necessary to conduct a detailed analysis of their microscopic load-bearing capacity.

Design/methodology/approach

Utilizing the representative volume element (RVE) model, this study delves into how the material composition influences mechanical parameters and failure processes.

Findings

To study the ultimate strength of the materials, this study considers the damage situation in various parts and analyzes the stress-strain curves under uniaxial and multiaxial loading conditions. Furthermore, the study investigates the degradation of macroscopic mechanical properties of fiber and resin layers due to fatigue induced performance degradation. Additionally, the research explores the impact of fatigue damage on key material properties such as the elastic modulus, shear modulus and Poisson's ratio.

Originality/value

By studying the load-bearing mechanisms at different scales, a direct correlation is established between the macroscopic mechanical behavior of the material and the microstructure of woven FRP materials. This comprehensive analysis ultimately elucidates the material's mechanical response under conditions of fatigue damage.

Details

International Journal of Structural Integrity, vol. 15 no. 4
Type: Research Article
ISSN: 1757-9864

Keywords

Open Access
Article
Publication date: 2 July 2024

Qinglong An, Chenguang Wang, Tai Ma, Fan Zou, Zhilei Fan, Entao Zhou, Ende Ge and Ming Chen

Bolted joint is the most important connection method in aircraft composite/metal stacked connections due to its large load transfer capacity and high manufacturing reliability…

Abstract

Purpose

Bolted joint is the most important connection method in aircraft composite/metal stacked connections due to its large load transfer capacity and high manufacturing reliability. Aircraft components are subjected to complex hybrid variable loads during service, and the mechanical properties of composite/metal bolted joint directly affect the overall safety of aircraft structures. Research on composite/metal bolted joint and their mechanical properties has also become a topic of general interests. This article reviews the current research status of aeronautical composite/metal bolted joint and its mechanical properties and looks forward to future research directions.

Design/methodology/approach

This article reviews the research progress on static strength failure and fatigue failure of composite/metal bolted joint, focusing on exploring failure analysis and prediction methods from the perspective of the theoretical models. At the same time, the influence and correlation mechanism of hole-making quality and assembly accuracy on the mechanical properties of their connections are summarized from the hole-making processes and damage of composite/metal stacked structures.

Findings

The progressive damage analysis method can accurately analyze and predict the static strength failure of composite/metal stacked bolted joint structures by establishing a stress analysis model combined with composite material performance degradation schemes and failure criteria. The use of mature metal material fatigue cumulative damage models and composite material fatigue progressive damage analysis methods can effectively predict the fatigue of composite/metal bolted joints. The geometric errors such as aperture accuracy and holes perpendicularity have the most significant impact on the connection performance, and their mechanical responses mainly include ultimate strength, bearing stiffness, secondary bending effect and fatigue life.

Research limitations/implications

Current research on the theoretical prediction of the mechanical properties of composite/metal bolted joints is mainly based on ideal fits with no gaps or uniform gaps in the thickness direction, without considering the hole shape characteristics generated by stacked drilling. At the same time, the service performance evaluation of composite/metal stacked bolted joints structures is currently limited to static strength and fatigue failure tests of the sample-level components and needs to be improved and verified in higher complexity structures. At the same time, it also needs to be extended to the mechanical performance research under more complex forms of the external loads in more environments.

Originality/value

The mechanical performance of the connection structure directly affects the overall structural safety of the aircraft. Many scholars actively explore the theoretical prediction methods for static strength and fatigue failure of composite/metal bolted joints as well as the impact of hole-making accuracy on their mechanical properties. This article provides an original overview of the current research status of aeronautical composite/metal bolted joint and its mechanical properties, with a focus on exploring the failure analysis and prediction methods from the perspective of theoretical models for static strength and fatigue failure of composite/metal bolt joints and looks forward to future research directions.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. 5 no. 1
Type: Research Article
ISSN: 2633-6596

Keywords

Article
Publication date: 9 July 2024

Abhishek Sahu and Shubhankar Bhowmick

Transient response of continuous composite material (CCM) fin made of high thermally conductive composite material is presented. The continuously varying effective properties of…

Abstract

Purpose

Transient response of continuous composite material (CCM) fin made of high thermally conductive composite material is presented. The continuously varying effective properties of composite material such as thermal conductivity, heat capacity and density have been modelled using the Mori-Tanaka homogenization theory and rule of mixture. Additionally, temperature dependency of thermal conductivity, heat generation (composite materials) and convection coefficient (fluid properties) have also been incorporated. Different base boundary conditions are addressed such as oscillating heat flow, oscillating temperature, step-changing heat flow and step-changing temperature. At the other boundary, the fin is assumed to have a convective tip.

Design/methodology/approach

Lattice Boltzmann method is implemented using an in-house source code for obtaining the numerical solution of typical non-linear heat balance equation of the aforementioned problem under various transient base boundary conditions.

Findings

The effects of various thermal parameters such as material diffusivity ratio and conductivity ratio, area ratio and Biot number on transient response of fin and temperature distribution of fins are studied and interpreted. The heat transfer rate and time for attainment of steady state temperature of metal matrix composite (MMC) fin are found to be proportionally dependent on their diffusivity ratio. Additionally for higher values of area ratio and biot number, MMC fins are reported to dissipate the heat more efficiently in comparision to homogeneous fins in terms of time required to attain the steady state and surface temperature.

Practical implications

Response of transient fin associated with advanced class of material can facilitates the practicing engineers for designing high-performance and/or miniaturized thermal management devices as used in electronic packaging industries.

Originality/value

Studies of composite fin consisting of laminating second layer of material over the first layer have been reported previously, however transient response of CCM fin fabricated by continuously varying the volume fraction of two materials along the fin length has not been reported till date. Such material finds its application in thermal management and electronic packaging industries. Results are plotted in form of a graph for different application-wise material combinations that have not been reported earlier, and it can be treated as design data.

1 – 10 of over 183000