Search results

1 – 10 of 65
Open Access
Article
Publication date: 10 July 2019

Sigmund Arntsønn Tronvoll, Sebastian Popp, Christer Westum Elverum and Torgeir Welo

This paper aims to present the mathematical foundation of so-called advance algorithms, developed to compensate for defects during acceleration and deacceleration of the print…

3805

Abstract

Purpose

This paper aims to present the mathematical foundation of so-called advance algorithms, developed to compensate for defects during acceleration and deacceleration of the print head in filament-based melt extrusion additive processes. It then investigates the validity of the mathematical foundation, its performance on a low-cost system and the effect of changing layer height on the algorithm’s associated process parameter.

Design/methodology/approach

This study starts with a compilation and review of literature associated with advance algorithms, then elaborates on its mathematical foundation and methods of implementation. Then an experiment displaying the performance of the algorithm implemented in Marlin machine firmware, Linear Advance 1.0, is performed using three different layer heights. The results are then compared with simulations of the system using Simulink.

Findings

Findings suggests that advance algorithms following the presented approach is capable of eliminating defects because of acceleration and deacceleration of the print head. The results indicate a layer height dependency on the associated process parameter, requiring higher compensation values for lower layer heights. It also shows higher compensation values for acceleration than deacceleration. Results from the simulated mathematical model correspond well with the experimental results but predict some rapid variations in flow rate that is not reflected in the experimental results.

Research limitations/implications

As there are large variations in printer design and materials, deviation between different setups must be expected.

Originality/value

To the best of authors’ knowledge, this study is the first to describe and investigate advance algorithms in academic literature.

Details

Rapid Prototyping Journal, vol. 25 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 28 February 2023

Manuel Jesus, Ana Sofia Guimarães, Bárbara Rangel and Jorge Lino Alves

The paper seeks to bridge the already familiar benefits of 3D printing (3DP) to the rehabilitation of cultural heritage, still based on the use of complex and expensive…

1604

Abstract

Purpose

The paper seeks to bridge the already familiar benefits of 3D printing (3DP) to the rehabilitation of cultural heritage, still based on the use of complex and expensive handcrafted techniques and scarce materials.

Design/methodology/approach

A compilation of different information on frequent anomalies in cultural heritage buildings and commonly used materials is conducted; subsequently, some innovative techniques used in the construction sector (3DP and 3D scanning) are addressed, as well as some case studies related to the rehabilitation of cultural heritage building elements, leading to a reflection on the opportunities and challenges of this application within these types of buildings.

Findings

The compilation of information summarised in the paper provided a clear reflection on the great potential of 3DP for cultural heritage rehabilitation, requiring the development of new mixtures (lime mortars, for example) compatible with the existing surface and, eventually, incorporating some residues that may improve interesting properties; the design of different extruders, compatible with the new mixtures developed and the articulation of 3D printers with the available mapping tools (photogrammetry and laser scanning) to reproduce the component as accurately as possible.

Originality/value

This paper sets the path for a new application of 3DP in construction, namely in the field of cultural heritage rehabilitation, by identifying some key opportunities, challenges and for designing the process flow associated with the different technologies involved.

Details

International Journal of Building Pathology and Adaptation, vol. 41 no. 3
Type: Research Article
ISSN: 2398-4708

Keywords

Open Access
Article
Publication date: 7 March 2023

Nanond Nopparat and Damien Motte

Present for more than 20 years, 3D food printing (3DFP) technology has not experienced the same widespread adoption as its non-food counterparts. It is believed that relevant…

1361

Abstract

Purpose

Present for more than 20 years, 3D food printing (3DFP) technology has not experienced the same widespread adoption as its non-food counterparts. It is believed that relevant business models are crucial for its expansion. The purpose of this study is to identify the dominant prototypical business models and patterns in the 3DFP industry. The knowledge gained could be used to provide directions for business model innovation in this industry.

Design/methodology/approach

The authors established a business model framework and used it to analyse the identified 3DFP manufacturers. The authors qualitatively identified the market’s prototypical business models and used agglomerative hierarchical clustering to extract further patterns.

Findings

All identified 3DFP businesses use the prototypical business model of selling ownership of physical assets, with some variations. Low-cost 3D food printers for private usage and dedicated 3D food printers for small-scale food producers are the two primary patterns identified. Furthermore, several benefits of 3DFP technology are not being used, and the identified manufacturers are barely present in high-revenue markets, which prevents them from driving technological innovation forward.

Practical implications

The extracted patterns can be used by the companies within the 3DFP industry and even in other additive manufacturing segments to reflect upon, refine or renew their business model. Some directions for business model innovation in this industry are provided.

Originality/value

To the best of the authors’ knowledge, this is the first quantitative study to give an account of the current 3DFP business models and their possible evolution. This study also contributes to the business model patterns methodological development.

Details

International Journal of Innovation Science, vol. 16 no. 1
Type: Research Article
ISSN: 1757-2223

Keywords

Open Access
Article
Publication date: 8 December 2023

Flaviana Calignano, Alessandro Bove, Vincenza Mercurio and Giovanni Marchiandi

Polymer laser powder bed fusion (PBF-LB/P) is an additive manufacturing technology that is sustainable due to the possibility of recycling the powder multiple times and allowing…

474

Abstract

Purpose

Polymer laser powder bed fusion (PBF-LB/P) is an additive manufacturing technology that is sustainable due to the possibility of recycling the powder multiple times and allowing the fabrication of gears without the aid of support structures and subsequent assembly. However, there are constraints in the process that negatively affect its adoption compared to other additive technologies such as material extrusion to produce gears. This study aims to demonstrate that it is possible to overcome the problems due to the physics of the process to produce accurate mechanism.

Design/methodology/approach

Technological aspects such as orientation, wheel-shaft thicknesses and degree of powder recycling were examined. Furthermore, the evolving tooth profile was considered as a design parameter to provide a manufacturability map of gear-based mechanisms.

Findings

Results show that there are some differences in the functioning of the gear depending on the type of powder used, 100% virgin or 50% virgin and 50% recycled for five cycles. The application of a groove on a gear produced with 100% virgin powder allows the mechanism to be easily unlocked regardless of the orientation and wheel-shaft thicknesses. The application of a specific evolutionary profile independent of the diameter of the reference circle on vertically oriented gears guarantees rotation continuity while preserving the functionality of the assembled mechanism.

Originality/value

In the literature, there are various studies on material aging and reuse in the PBF-LB/P process, mainly focused on the powder deterioration mechanism, powder fluidity, microstructure and mechanical properties of the parts and process parameters. This study, instead, was focused on the functioning of gears, which represent one of the applications in which this technology can have great success, by analyzing the two main effects that can compromise it: recycled powder and vertical orientation during construction.

Details

Rapid Prototyping Journal, vol. 30 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 8 December 2020

Maximilian Kunovjanek and Christian Wankmüller

The COVID-19 pandemic caused global supply disruptions and shortages that resulted in countries battling over desperately needed (medical) supplies. In this mayhem, additive…

6008

Abstract

Purpose

The COVID-19 pandemic caused global supply disruptions and shortages that resulted in countries battling over desperately needed (medical) supplies. In this mayhem, additive manufacturing (AM) provided relief to the strained healthcare systems and manufacturing environments by offering an alternative way to rapidly produce desired products. This study sheds light on how AM was used globally in response to the COVID-19 pandemic.

Design/methodology/approach

The study undertakes a systematic and content-centric review of 289 additively manufactured products made in response to the COVID-19 pandemic. Additionally, quantitative frequency-based text mining and various descriptive analyses were applied that support the investigation of the subject under regard.

Findings

Results show that AM was primarily used in the medical domain for the production of standard medical items, such as personal protective equipment (PPE) but also for non-obvious and new applications (e.g. swab simulator, rapid diagnostic kits, etc.). Also, certain paradigm shifts were observed, as the effective move to mass production and the mitigation of problems related to certification and standardization emerged as prominent management prospects. Nevertheless, various obstacles arose and remained in the path of lasting AM success, especially with respect to print quality, raw material supply and technological versatility.

Originality/value

Due to the actuality of the topic under investigation, no comparable study has so far been conducted. The systematic review provides a conclusive and precise foundation for further analysis and subsequent discussions. Additionally, no comparable study mapping such a wide array of different AM products exists today.

Details

Journal of Manufacturing Technology Management, vol. 32 no. 9
Type: Research Article
ISSN: 1741-038X

Keywords

Open Access
Article
Publication date: 7 March 2023

Solomon O. Obadimu and Kyriakos I. Kourousis

Honeycombs enjoy wide use in various engineering applications. The emergence of additive manufacturing (AM) as a method of customisable of parts has enabled the reinvention of the…

1175

Abstract

Purpose

Honeycombs enjoy wide use in various engineering applications. The emergence of additive manufacturing (AM) as a method of customisable of parts has enabled the reinvention of the honeycomb structure. However, research on in-plane compressive performance of both classical and new types of honeycombs fabricated via AM is still ongoing. Several important findings have emerged over the past years, with significance for the AM community and a review is considered necessary and timely. This paper aims to review the in-plane compressive performance of AM honeycomb structures.

Design/methodology/approach

This paper provides a state-of-the-art review focussing on the in-plane compressive performance of AM honeycomb structures, covering both polymers and metals. Recently published studies, over the past six years, have been reviewed under the specific theme of in-plane compression properties.

Findings

The key factors influencing the AM honeycombs' in-plane compressive performance are identified, namely the geometrical features, such as topology shape, cell wall thickness, cell size and manufacturing parameters. Moreover, the techniques and configurations commonly used for geometry optimisation toward improving mechanical performance are discussed in detail. Current AM limitations applicable to AM honeycomb structures are identified and potential future directions are also discussed in this paper.

Originality/value

This work evaluates critically the primary results and findings from the published research literature associated with the in-plane compressive mechanical performance of AM honeycombs.

Details

International Journal of Structural Integrity, vol. 14 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

Open Access
Article
Publication date: 15 March 2022

Mehrshad Mehrpouya, Daniel Tuma, Tom Vaneker, Mohamadreza Afrasiabi, Markus Bambach and Ian Gibson

This study aims to provide a comprehensive overview of the current state of the art in powder bed fusion (PBF) techniques for additive manufacturing of multiple materials. It…

6625

Abstract

Purpose

This study aims to provide a comprehensive overview of the current state of the art in powder bed fusion (PBF) techniques for additive manufacturing of multiple materials. It reviews the emerging technologies in PBF multimaterial printing and summarizes the latest simulation approaches for modeling them. The topic of “multimaterial PBF techniques” is still very new, undeveloped, and of interest to academia and industry on many levels.

Design/methodology/approach

This is a review paper. The study approach was to carefully search for and investigate notable works and peer-reviewed publications concerning multimaterial three-dimensional printing using PBF techniques. The current methodologies, as well as their advantages and disadvantages, are cross-compared through a systematic review.

Findings

The results show that the development of multimaterial PBF techniques is still in its infancy as many fundamental “research” questions have yet to be addressed before production. Experimentation has many limitations and is costly; therefore, modeling and simulation can be very helpful and is, of course, possible; however, it is heavily dependent on the material data and computational power, so it needs further development in future studies.

Originality/value

This work investigates the multimaterial PBF techniques and discusses the novel printing methods with practical examples. Our literature survey revealed that the number of accounts on the predictive modeling of stresses and optimizing laser scan strategies in multimaterial PBF is low with a (very) limited range of applications. To facilitate future developments in this direction, the key information of the simulation efforts and the state-of-the-art computational models of multimaterial PBF are provided.

Details

Rapid Prototyping Journal, vol. 28 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 6 December 2022

Biniam Tekle Teweldebrhan, Praveen Maghelal and Abdulla Galadari

Although additive manufacturing (AM; 3D printing/3DP) is presently in its infancy, once it becomes economically viable for mass production, it would revolutionize the operation…

1659

Abstract

Purpose

Although additive manufacturing (AM; 3D printing/3DP) is presently in its infancy, once it becomes economically viable for mass production, it would revolutionize the operation and supply chain network of traditional businesses and manufacturing industries. To this end, approaches for ensuring a smooth transition of the economy, businesses, manufacturing centers and related services are being investigated. This review paper assesses the existing literature on the impact of AM on the maritime transportation sector.

Design/methodology/approach

This paper provides a systematic literature review through three methodological phases: (1) a comprehensive review of the number of English language literature studies published on the topics of AM or 3DP (1970–2021); (2) a bibliometric analysis of selected keyword combinations and (3) a detailed review on the impact of AM on different sectors.

Findings

The key findings are that existing studies do not attempt to forecast shipping volume and ton-miles that can be affected by the mainstreaming of the technology. Additionally, existing literature that focuses on the impact of the technology on different shipping categories is limited to studies on container ships.

Originality/value

The review identifies some potential areas of research that since maritime transportation will be affected by mainstreaming AM, it will have economic, social and environmental impacts on global trade that require future assessment.

Details

Journal of International Logistics and Trade, vol. 20 no. 4
Type: Research Article
ISSN: 1738-2122

Keywords

Open Access
Article
Publication date: 25 April 2024

Ilse Valenzuela Matus, Jorge Lino Alves, Joaquim Góis, Paulo Vaz-Pires and Augusto Barata da Rocha

The purpose of this paper is to review cases of artificial reefs built through additive manufacturing (AM) technologies and analyse their ecological goals, fabrication process…

Abstract

Purpose

The purpose of this paper is to review cases of artificial reefs built through additive manufacturing (AM) technologies and analyse their ecological goals, fabrication process, materials, structural design features and implementation location to determine predominant parameters, environmental impacts, advantages, and limitations.

Design/methodology/approach

The review analysed 16 cases of artificial reefs from both temperate and tropical regions. These were categorised based on the AM process used, the mortar material used (crucial for biological applications), the structural design features and the location of implementation. These parameters are assessed to determine how effectively the designs meet the stipulated ecological goals, how AM technologies demonstrate their potential in comparison to conventional methods and the preference locations of these implementations.

Findings

The overview revealed that the dominant artificial reef implementation occurs in the Mediterranean and Atlantic Seas, both accounting for 24%. The remaining cases were in the Australian Sea (20%), the South Asia Sea (12%), the Persian Gulf and the Pacific Ocean, both with 8%, and the Indian Sea with 4% of all the cases studied. It was concluded that fused filament fabrication, binder jetting and material extrusion represent the main AM processes used to build artificial reefs. Cementitious materials, ceramics, polymers and geopolymer formulations were used, incorporating aggregates from mineral residues, biological wastes and pozzolan materials, to reduce environmental impacts, promote the circular economy and be more beneficial for marine ecosystems. The evaluation ranking assessed how well their design and materials align with their ecological goals, demonstrating that five cases were ranked with high effectiveness, ten projects with moderate effectiveness and one case with low effectiveness.

Originality/value

AM represents an innovative method for marine restoration and management. It offers a rapid prototyping technique for design validation and enables the creation of highly complex shapes for habitat diversification while incorporating a diverse range of materials to benefit environmental and marine species’ habitats.

Details

Rapid Prototyping Journal, vol. 30 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 29 July 2022

Serena Graziosi, Federico Maria Ballo, Flavia Libonati and Sofia Senna

This study aims to investigate the behaviour of soft lattices, i.e. lattices capable of reaching large deformations, and the influence of the printing process on it. The authors…

1504

Abstract

Purpose

This study aims to investigate the behaviour of soft lattices, i.e. lattices capable of reaching large deformations, and the influence of the printing process on it. The authors focused on two cell topologies, the body-centred cubic (BCC) and the Kelvin, characterized by a bending-dominated behaviour relevant to the design of energy-absorbing applications.

Design/methodology/approach

The authors analysed the experimental and numerical behaviour of multiple BCC and Kelvin structures. The authors designed homogenous and graded arrays of different dimensions. The authors compared their technical feasibility with two three-dimensional-printed technologies, such as the fused filament fabrication and the selective laser sintering, choosing thermoplastic polyurethane as the base material.

Findings

The results demonstrate that multiple design aspects determine how the printing process influences the behaviour of soft lattices. Besides, a graded distribution of the material could contribute to fine-tuning this behaviour and mitigating the influence of the printing process.

Practical implications

Despite being less explored than their rigid counterpart, soft lattices are now becoming of great interest, especially when lightweight, wearable and customizable solutions are needed. This study contributes to filling this gap.

Originality/value

Only a few studies analyse design and printing issues of soft lattices due to the intrinsic complexity of printing flexible materials.

Details

Rapid Prototyping Journal, vol. 28 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Access

Only Open Access

Year

All dates (65)

Content type

1 – 10 of 65