Search results

1 – 10 of 38
Article
Publication date: 13 August 2024

Long Chen, Zheyu Zhang, Ni An, Xin Wen and Tong Ben

The purpose of this study is to model the global dynamic hysteresis properties with an improved Jiles–Atherton (J-A) model through a unified set of parameters.

Abstract

Purpose

The purpose of this study is to model the global dynamic hysteresis properties with an improved Jiles–Atherton (J-A) model through a unified set of parameters.

Design/methodology/approach

First, the waveform scaling parameters β, λk and λc are used to improve the calculation accuracy of hysteresis loops at low magnetic flux density. Second, the Riemann–Liouville (R-L) type fractional derivatives technique is applied to modified static inverse J-A model to compute the dynamic magnetic field considering the skin effect in wideband frequency magnetization conditions.

Findings

The proposed model is identified and verified by modeling the hysteresis loops whose maximum magnetic flux densities vary from 0.3 to 1.4 T up to 800 Hz using B30P105 electrical steel. Compared with the conventional J-A model, the global simulation ability of the proposed dynamic model is much improved.

Originality/value

Accurate modeling of the hysteresis properties of electrical steels is essential for analyzing the loss behavior of electrical equipment in finite element analysis (FEA). Nevertheless, the existing inverse Jiles–Atherton (J-A) model can only guarantee the simulation accuracy with higher magnetic flux densities, which cannot guarantee the analysis requirements of considering both low magnetic flux density and high magnetic flux density in FEA. This paper modifies the dynamic J-A model by introducing waveform scaling parameters and the R-L fractional derivative to improve the hysteresis loops’ simulation accuracy from low to high magnetic flux densities with the same set of parameters in a wide frequency range.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 43 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 27 August 2024

Brahim Ladghem-Chikouche, Lazhar Roubache, Kamel Boughrara, Frédéric Dubas, Zakarya Djelloul-Khedda and Rachid Ibtiouen

The purpose of this study is to present a novel extended hybrid analytical method (HAM) that leverages a two-dimensional (2-D) coupling between the semi-analytical Maxwell–Fourier…

Abstract

Purpose

The purpose of this study is to present a novel extended hybrid analytical method (HAM) that leverages a two-dimensional (2-D) coupling between the semi-analytical Maxwell–Fourier analysis and the finite element method (FEM) in Cartesian coordinates.

Design/methodology/approach

The proposed model is applied to flat permanent-magnet linear electrical machines with rotor-dual. The magnetic field solution across the entire machine is established by coupling an exact analytical model (AM), designed for regions with relative magnetic permeability equal to unity, with a FEM in ferromagnetic regions. The coupling between AM and FEM occurs bidirectionally (x, y) along the edges separating teeth regions and their adjacent regions through applied boundary conditions.

Findings

The developed HAM yields accurate results concerning the magnetic flux density distribution, cogging force and induced voltage under various operating conditions, including magnetic or geometric parameters. A comparison with hybrid finite-difference and hybrid reluctance network methods demonstrates very satisfactory agreement with 2-D FEM.

Originality/value

The original contribution of this paper lies in establishing a direct coupling between the semi-analytical Maxwell–Fourier analysis and the FEM, particularly at the interface between adjacent regions with differing magnetic parameters.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 43 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 July 2024

Ruipan Lu, Zhangqi Liu, Xiping Liu, Baoyu Sun and Jiangwei Liang

To address the issues of the insufficient output torque associated with the application of intensifying-flux permanent magnet (PM) machines in electric vehicles, this paper aims…

Abstract

Purpose

To address the issues of the insufficient output torque associated with the application of intensifying-flux permanent magnet (PM) machines in electric vehicles, this paper aims to propose an intensifying-flux hybrid excitation PM machine. It is possible to adjust the air gap magnetic field by adjusting the field current in the excitation winding, thereby increasing the torque output capability and speed range of the machine.

Design/methodology/approach

First, a novel intensifying-flux hybrid excited permanent magnet synchronous machine (IF-HEPMSM) is proposed on the basis of intensifying-flux permanent magnet synchronous machine (IF-PMSM) and an equivalent magnetic circuit model is established. Second, the tooth width and yoke thickness of the machine stator are optimized to ensure the overload capacity of the machine while effectively improving the wide flux regulation range. Furthermore, the electromagnetic characteristics of the IF-HEPMSM are investigated and compared with the IF-PMSM and conventional permanent magnet synchronous machine (PMSM) by using finite element simulations.

Findings

The id of IF-HEPMSM and IF-PMSM is greater than zero low-speed magnetizing current. And the flux-weakening current of the IF-HEPMSM is 18% and 3% smaller than of the conventional PMSM and IF-PMSM.

Practical implications

Aiming at the problems of IF-PMSM applied to electric vehicles, this paper proposes an IF-HEPMSM. The air gap magnetic field is adjusted by controlling the current of the excitation winding to improve the reliability of the machine. Therefore, the IF-HEPMSM combines the advantages of high-power density and high efficiency of the PMSM and the controllable magnetic field of the electro-excitation machine, which is of great engineering value when applied in the field of electric vehicles.

Originality/value

The proposed IF-HEPMSM offers better flux regulation capability with electromagnetic characteristics analysis and maps of dq-axis current as compared to IF-PMSM and conventional PMSM. Moreover, the improvement of the torque can make up for the shortcomings of the insufficient torque output capability of the IF-PMSM.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 43 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 27 August 2024

Xiaobao Chai, Jinglin Liu, RuiZhi Guan and Minglang Xiao

To improve the output torque density of the machine and to be better suited for automation applications, this paper aims to propose a double-permanent-magnet enhanced hybrid…

Abstract

Purpose

To improve the output torque density of the machine and to be better suited for automation applications, this paper aims to propose a double-permanent-magnet enhanced hybrid stepping machine (DPMEHSM) with tangential and radial magnetization.

Design/methodology/approach

First, the structure of DPMEHSM is introduced and its operation principle is analyzed by describing the variation in stator poles versus time. Second, based on the similar electrical load and amount of PM, the size equations of the DPMEHSM are designed and the main parameters are presented. Third, the electromagnetic performances including the PM flux linkage distribution, magnetic density distribution, air-gap field, back electromotive force (back-EMF), detent torque, holding torque and output torque of DPMEHSM and stator-PM hybrid stepping machine (SPMHSM) are analyzed based on the finite element method.

Findings

The results show that the DPMEHSM has superiority in back-EMF, holding torque and output torque.

Originality/value

This paper proposes a DPMEHSM with tangential and radial magnetization to improve the output torque density.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 43 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 14 June 2024

Jie Wu, Kang Wang, Ming Zhang, Leilei Guo, Yongpeng Shen, Mingjie Wang, Jitao Zhang and Vaclav Snasel

When solving the cogging torque of complex electromagnetic structures, such as consequent pole hybrid excitation synchronous (CPHES) machine, traditional methods have a huge…

Abstract

Purpose

When solving the cogging torque of complex electromagnetic structures, such as consequent pole hybrid excitation synchronous (CPHES) machine, traditional methods have a huge computational complexity. The notable feature of CPHES machine is the symmetric range of field-strengthening and field-weakening, but this type of machine is destined to be equipped with a complex electromagnetic structure. The purpose of this paper is to propose a hybrid analysis method to quickly and accurately solve the cogging torque of complex 3D electromagnetic structure, which is applicable to CPHES machine with different magnetic pole shapings.

Design/methodology/approach

In this paper, a hybrid method for calculating the cogging torque of CPHES machine is proposed, which considers three commonly used pole shapings. Firstly, through magnetic field analysis, the complex 3D finite element analysis (FEA) is simplified to 2D field computing. Secondly, the discretization method is used to obtain the distribution of permeance and permeance differential along the circumference of the air-gap, taking into account the effect of slots. Finally, the cogging torque of the whole motor is obtained by using the idea of modular calculation and the symmetry of the rotor structure.

Findings

This method is applicable to different pole shapings. The experimental results show that the proposed method is consistent with 3D FEA and experimental measured results, and the average calculation time is reduced from 8 h to 4 min.

Originality/value

This paper proposes a new concept for calculating cogging torque, which is a hybrid calculation of dimension reduction and discretization modules. Based on magnetic field analysis, the 3D problem is simplified into a 2D issue, reducing computational complexity. Based on the symmetry of the machine structure, a modeling method for discretized analytical models is proposed to calculate the cogging torque of the machine.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 43 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 23 September 2024

Gauthier Derenty-Camenen, Alexis Lepot, Olivier Chadebec, Olivier Pinaud, Laure-Line Rouve and Steeve Zozor

The purpose of this paper is to propose a compact model to represent the magnetic field outside the sources. This model provides the multipolar ordering of a spherical harmonic…

Abstract

Purpose

The purpose of this paper is to propose a compact model to represent the magnetic field outside the sources. This model provides the multipolar ordering of a spherical harmonic expansion far from the source while being valid in its close proximity.

Design/methodology/approach

The authors investigate equivalent surface sources that enable to compute the field very close to any chosen surface that encloses the source. Then the authors present a method to find an appropriate initial basis and its associated inner product that allow to construct multipolar harmonic bases for these equivalent sources, where any vector of order k produces a field that decreases at least as fast as the field produced by a multipole of order k. Finally, those bases are numerically implemented to demonstrate their performances, both far from the source and in its close proximity.

Findings

The charge distribution and normal dipole distribution are well-suited to construct multipolar harmonic bases of equivalent sources. These bases can be described by as few parameters as the decreasing spherical harmonic expansion. Comparison with other numerical models shows its ability to compute the field both far from the source and close to it.

Originality/value

A basis for normal dipole distribution has already been described in the literature. This paper presents a general method to construct a multipolar basis for equivalent sources and uses it to construct a basis for single-layer potential.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0332-1649

Keywords

Open Access
Article
Publication date: 23 September 2024

Prabhugouda Mallanagouda Patil, Bharath Goudar and Ebrahim Momoniat

Many industries use non-Newtonian ternary hybrid nanofluids (THNF) because of how well they control rheological and heat transport. This being the case, this paper aims to…

Abstract

Purpose

Many industries use non-Newtonian ternary hybrid nanofluids (THNF) because of how well they control rheological and heat transport. This being the case, this paper aims to numerically study the Casson-Williamson THNF flow over a yawed cylinder, considering the effects of several slips and an inclined magnetic field. The THNF comprises Al2O3-TiO2-SiO2 nanoparticles because they improve heat transmission due to large thermal conductivity.

Design/methodology/approach

Applying suitable nonsimilarity variables transforms the coupled highly dimensional nonlinear partial differential equations (PDEs) into a system of nondimensional PDEs. To accomplish the goal of achieving the solution, an implicit finite difference approach is used in conjunction with Quasilinearization. With the assistance of a script written in MATLAB, the numerical results and the graphical representation of those solutions were ascertained.

Findings

As the Casson parameter β increases, there is an improvement in the velocity profiles in both chord and span orientations, while the gradients Re1/2Cf,Re1/2C¯f reduce for the same variations of β. The velocities of Casson THNF are greater than those of Casson-Williamson THNF. Approximately, a 202% and a 32% ascension are remarked in the magnitudes of Re1/2Cf and Re1/2C¯f for Casson-Williamson THNF than the Casson THNF only. When velocity slip attribute S1 jumps to 1 from 0.5, magnitude of both F(ξ,η) and Re1/2Cf fell down and it is reflected to be 396% at ξ=1, Wi=1 and β=1. An augmentation in thermal jump results in advanced fluid temperature and lower Re1/2Nu. In particular, about 159% of down drift is detected when S2 taking 1.

Originality/value

There is no existing research on the effects of Casson-Williamson THNF flow over a yawed cylinder with multiple slips and an angled magnetic field, according to the literature.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 9 August 2024

He Cheng, Fandi Lin, Jing Wu and Tong Zhang

The purpose of this paper is to introduce and analyze a dual-side-permanent-magnet Halbach array vernier (DSPMHV) machine and to propose methods for achieving high torque density.

Abstract

Purpose

The purpose of this paper is to introduce and analyze a dual-side-permanent-magnet Halbach array vernier (DSPMHV) machine and to propose methods for achieving high torque density.

Design/methodology/approach

Flux harmonics and torque characteristics are analyzed by using finite element analysis. First, a suitable pole-slot combination is selected by comparison. Second, field modulation processes of DSPMHV machine are analyzed to identify the reason for high torque density. And it is compared with dual-side-PM (DSPM) machine to analyze flux harmonic and verify the flux concentrating effect of the Halbach array.

Findings

The permanent magnet (PM) field of the DSPM machine is approximately equal to the superposition of stator-PM field and rotor-PM field, which is the reason for high torque density. And the Halbach array can reduce flux leakage and increase the amplitude of main flux harmonics, then further improves torque. Improvement of torque can be achieved by choosing right pole-slot combination, adopting DSPM machine structure, reducing flux leakage and adopting field modulation principle.

Originality/value

The DSPMHV machine with split-tooth is proposed in this paper by combining the Halbach array with DSPM structure. This paper analyzes the bidirectional field modulation process, the reason for high torque density of the DSPM machine is obtained. Comparison with the DSPM machine verifies the flux concentrating effect of Halbach array. To alleviate the magnetic saturation in part of stator teeth, this paper proposes an improved DSPMHV machine with shaped auxiliary magnet.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 43 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 23 September 2024

Paluru Sreedevi and P. Sudarsana Reddy

This paper aims to numerically examine the impact of gyrotactic microorganisms and radiation on heat transport features of magnetic nanoliquid within a closed cavity…

Abstract

Purpose

This paper aims to numerically examine the impact of gyrotactic microorganisms and radiation on heat transport features of magnetic nanoliquid within a closed cavity. Thermophoresis, chemical reaction and Brownian motion are also considered in flow geometry for the moment of nanoparticles.

Design/methodology/approach

Finite element method (FEM) was depleted to numerically approximate the temperature, momentum, concentration and microorganisms concentration of the nanoliquid. The present simulation was unsteady state, and the resulting transformed equations are simulated by FEM-based Mathematica algorithm.

Findings

It has been found that isotherm patterns get larger with increasing values of the magnetic field parameter. Additionally, numerical codes for rate of heat transport impedance inside the cavity with an increasing Brownian motion parameter values.

Originality/value

To the best of the authors’ knowledge, the research work carried out in this paper is new, and no part is copied from others’ works.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 24 September 2024

Panagiota Polydoropoulou, Leonardo Cosma, George Labeas, Dionysios Markatos, Rosario Dotoli and Francesca Felline

This paper aims to use two different numerical approaches to simulate the induction welding process for a hybrid thermoplastic material, and the results have been validated…

Abstract

Purpose

This paper aims to use two different numerical approaches to simulate the induction welding process for a hybrid thermoplastic material, and the results have been validated experimentally.

Design/methodology/approach

The first approach used a numerical model that combines electromagnetism, heat transfer and solid mechanics in the same numerical environment using Hexagon Marc software. Simultaneously, a computationally efficient approach combined steady-state electromagnetism results at specific intervals in the Ansys EM suite with heat transfer and solid mechanics in Ansys Workbench.

Findings

The results from both numerical approaches showed a strong correlation with the experimental findings.

Originality/value

The current research offers valuable insights into enhancing induction welding procedures within the aerospace industry, as well as across broader industrial applications. The synergistic combination of numerical simulations and experimental validation served as a robust framework for future research endeavors aimed at enhancing the efficiency, reliability and quality of thermoplastic welding techniques.

Details

Aircraft Engineering and Aerospace Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 10 of 38