Search results

1 – 2 of 2
Article
Publication date: 28 August 2024

Ana Topalović, Mirko Knežević, Ljubica Ivanović, Maja Mikulic-Petkovsek and Višnja Bogdanović

This study aims to examine the relationship between the chemical composition of juices obtained from fruits of autochthonous wild pomegranate (Punica granatum L.) grown in…

Abstract

Purpose

This study aims to examine the relationship between the chemical composition of juices obtained from fruits of autochthonous wild pomegranate (Punica granatum L.) grown in Montenegro and their cytotoxic effects on cancer cells.

Design/methodology/approach

To explore the potential value of wild pomegranate fruits, in vitro biological assays were carried out with juices whose composition was analyzed in detail for sugars, organic acids, vitamin C and phenolic compounds. The effect of juices on survival was determined in human lung A549, cervical HeLa and breast MCF-7 carcinoma cells by MTT assay. As a control, the cytotoxicity against normal fetal lung fibroblasts (MRC-5) was monitored.

Findings

Among cancer cell lines, considering the IC50 related to total phenolics, the lowest value – 13 µg/mL was found for the A549. The strongest effect on lung cells was assumed due to the favorable contribution of ellagitannins to total phenolics in juice as well as the given combination of anthocyanins and their synergistic action. For HeLa cells, the lowest IC50 value was obtained at 88 µg/mL, and the cytotoxicity could be matched with the effects of anthocyanins and catechin. For MCF-7 cells, the lowest IC50 was 504 µg/mL, and the elevated levels of vitamin C and ellagic acid derivatives should have a noticeable effect on these cells.

Originality/value

This study provides an important contribution to the knowledge on the effect of phytochemicals from wild pomegranate juice on lung, cervical and breast cancer cells, in vitro. The present observations suggest that the juice of wild pomegranate has the potential in the fight against cancer.

Details

Nutrition & Food Science , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0034-6659

Keywords

Article
Publication date: 29 August 2024

Iman Ghaderi, Amir Hossein Behravesh, Seyyed Kaveh Hedayati, Seyed Alireza Alavinasab Ardebili, Omid Kordi, Ghaus Rizvi and Khodayar Gholivand

This study aims to design and implement a multimaterial system for printing multifunctional specimens suitable for various sectors, with a particular focus on biomedical…

Abstract

Purpose

This study aims to design and implement a multimaterial system for printing multifunctional specimens suitable for various sectors, with a particular focus on biomedical applications such as addressing mandibular bone loss.

Design/methodology/approach

To enhance both the mechanical and biological properties of scaffolds, an automatic multimaterial setup using vat photopolymerization was developed. This setup features a linear system with two resin vats and one ultrasonic cleaning tank, facilitating the integration of diverse materials and structures to optimize scaffold composition. Such versatility allows for the simultaneous achievement of various characteristics in scaffold design.

Findings

The printed multimaterial scaffolds, featuring 20 Wt.% hydroxylapatite (HA) on the interior and poly-L-lactic acid (PLLA) with 1 Wt.% graphene oxide (GO) on the exterior, exhibited favorable mechanical and biological properties at the optimum postcuring and heat-treatment time. Using an edited triply periodic minimal surface (TPMS) lattice structure further enhanced these properties. Various multimaterial specimens were successfully printed and evaluated, showcasing the capability of the setup to ensure functionality, cleanliness and adequate interface bonding. Additionally, a novel Gyroid TPMS scaffold with a nominal porosity of 50% was developed and experimentally validated.

Originality/value

This study demonstrates the successful fabrication of multimaterial components with minimal contaminations and suitable mechanical and biological properties. By combining PLLA-HA and PLLA-GO, this innovative technique holds significant promise for enhancing the effectiveness of regenerative procedures, particularly in the realm of dentistry.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 2 of 2