Search results

1 – 3 of 3
Article
Publication date: 22 August 2024

Antar Tahiri, Haroun Ragueb, Mustafa Moussaoui, Kacem Mansouri, Djemaa Guerraiche and Khelifa Guerraiche

This paper aims to present a numerical investigation into heat transfer and entropy generation resulting from magnetohydrodynamic laminar flow through a microchannel under…

Abstract

Purpose

This paper aims to present a numerical investigation into heat transfer and entropy generation resulting from magnetohydrodynamic laminar flow through a microchannel under asymmetric boundary conditions. Furthermore, the authors consider the effects of viscous dissipation and Joule heating.

Design/methodology/approach

The finite difference method is used to obtain the numerical solution. Simulations are conducted across a broad range of Hartmann (Ha = 0 ∼ 40) and Brinkman (Br = 0.01 ∼ 1) numbers, along with various asymmetric isothermal boundaries characterized by a heating ratio denoted as ϕ.

Findings

The findings indicate a significant increase in the Nusselt number with increasing Hartmann number, regardless of whether Br equals zero or not. In addition, it is demonstrated that temperature differences between the microchannel walls can lead to substantial distortions in fluid temperature distribution and heat transfer. The results reveal that the maximum entropy generation occurs at the highest values of Ha and η (a dimensionless parameter emerging from the formulation) obtained for ϕ = −1. Moreover, it is observed that local entropy generation rates are highest near the channel wall at the entrance region.

Originality/value

The study provides valuable insights into the complex interactions between magnetic fields, viscous dissipation and Joule heating in microchannel flows, particularly under asymmetric heating conditions. This contributes to a better understanding of heat transfer and entropy generation in advanced microfluidic systems, which is essential for optimizing their design and performance.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 2 January 2023

Mustafa S. Al-Khazraji, S.H. Bakhy and M.J. Jweeg

The purpose of this review paper is to provide a review of the most recent advances in the field of manufacturing composite sandwich panels along with their advantages and…

Abstract

Purpose

The purpose of this review paper is to provide a review of the most recent advances in the field of manufacturing composite sandwich panels along with their advantages and limitations. The other purpose of this paper is to familiarize the researchers with the available developments in manufacturing sandwich structures.

Design/methodology/approach

The most recent research articles in the field of manufacturing various composite sandwich structures were reviewed. The review process started by categorizing the available sandwich manufacturing techniques into nine main categories according to the method of production and the equipment used. The review is followed by outlining some automatic production concepts toward composite sandwich automated manufacturing. A brief summary of the sandwich manufacturing techniques is given at the end of this article, with recommendations for future work.

Findings

It has been found that several composite sandwich manufacturing techniques were proposed in the literature. The diversity of the manufacturing techniques arises from the variety of the materials as well as the configurations of the final product. Additive manufacturing techniques represent the most recent trend in composite sandwich manufacturing.

Originality/value

This work is valuable for all researchers in the field of composite sandwich structures to keep up with the most recent advancements in this field. Furthermore, this review paper can be considered as a guideline for researchers who are intended to perform further research on composite sandwich structures.

Details

Journal of Engineering, Design and Technology , vol. 22 no. 5
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 23 August 2024

Yali Guo, Hui Liu, Luyuan Gong and Shengqiang Shen

The purpose of this paper is to analyze the mechanism of nanofluid enhanced heat transfer in microchannels and promote the application of nanofluids in industrial processes such…

Abstract

Purpose

The purpose of this paper is to analyze the mechanism of nanofluid enhanced heat transfer in microchannels and promote the application of nanofluids in industrial processes such as solar collectors, electronic cooling and automotive batteries.

Design/methodology/approach

The two-phase lattice Boltzmann method was used to calculate the flow and heat transfer characteristics of Al2O3 nanofluids in a microchannel at Re = 50. By comparing the simulation results of pure water, nanofluids without calculated nanoparticle-fluid interaction forces and nanofluids with calculated nanoparticle-fluid interaction forces, the effects of physical properties improvement and interaction forces on flow and heat transfer are quantified.

Findings

The findings show that the nanofluid (φ = 3%, R = 10 nm) increases the average Nusselt number by 22.40% at Re = 50. In particular, 16.16% of the improvement relates to nanoparticles optimizing the thermophysical parameters of the base fluid. The remaining 6.24% relates to the disturbance of the thermal boundary layer caused by the interaction between nanoparticles and the base fluid. Moreover, the nanoparticle has a negligible effect on the average Fanning friction factor. Ultimately, we conclude that the nanofluid is an excellent heat transfer working medium based on its performance evaluation criterion, PEC = 1.225.

Originality/value

To the best of the authors' knowledge, this research quantifies for the first time the contribution of nanoparticle-liquid interactions and nanofluids physical properties to enhanced heat transfer, advancing the knowledge of the nanoparticle's behavior in liquid systems.

Details

Multidiscipline Modeling in Materials and Structures, vol. 20 no. 5
Type: Research Article
ISSN: 1573-6105

Keywords

1 – 3 of 3