Search results

1 – 6 of 6
Article
Publication date: 12 September 2023

Zhili Zhao, Mingqiang Zhang, Xi Meng, Zhenkun Li, Jiazhe Li, Luying Qiu and Zeyu Ren

The author proposed a friction plunge micro-welding (FPMW) method and applied it to column grid array packaging to realize the connection of copper columns without precision molds…

Abstract

Purpose

The author proposed a friction plunge micro-welding (FPMW) method and applied it to column grid array packaging to realize the connection of copper columns without precision molds assisted positioning. The purpose of this paper is to study the flow behavior of the solder undergoing frictional thermo-mechanical action during the FPMW and to determine the source of the solders in the micro-zones with different microstructure characteristics near the solder/Cu column friction interface.

Design/methodology/approach

Three kinds of Sn58Bi/SAC305 and SAC305/Pb90Sn composite solder samples were designed to study the flow behavior of the solder during FPMW using Bi and Pb as tracer elements.

Findings

The results show that most of the solders in the position occupied by the copper column was softened and plasticized during the welding process and was extruded to side of the copper column, flowing axially, circumferentially and radially along a trajectory similar to a conical spiral line. Under the drive of the tangential friction force and the radial hold-tight force, the extruded out visco-plastic solders fully mixed with the visco-plastic solders on the sides of the copper column, and bonded with the solders that deformed plastically on the periphery, so that a stir zone and a dynamic recrystallization zone finally evolved. The outside plastically deformed solders evolved into a thermo-mechanical affected zone.

Originality/value

The flow behavior of the solder during the FPMW was determined, as well as the source of the solders in micro-zones with different microstructure characteristics.

Details

Soldering & Surface Mount Technology, vol. 36 no. 1
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 7 December 2022

Xue Yang, Luying Zhao, Yanli Yang and Chang Li

This study aims to complement existing studies by investigating the impact of different corporate social responsibility (CSR) information disclosed by peer listed stars (i.e…

Abstract

Purpose

This study aims to complement existing studies by investigating the impact of different corporate social responsibility (CSR) information disclosed by peer listed stars (i.e. governance information [GI] and output information [OI]) on focal firms’ responsive CSR (RCSR) and strategic CSR (SCSR) practices. The authors also investigate the influence of different boundary conditions (i.e. founders’ social status [SS] and industry pollution intensity).

Design/methodology/approach

Based on the listed stars of 16 industries and their 4,096 private peers in China, the authors use the least squares method and logistic regression models to analyze the data set.

Findings

The results indicate that the GI of peer listed stars can only positively affect firms’ RCSR behavior. The OI of peer listed stars has a positive effect on firms’ SCSR behavior while negatively affecting firms’ RCSR behavior. The SS of focal firms’ founders and their interaction with the industry’s pollution level strengthen the abovementioned positive relationships while weakening the negative ones.

Practical implications

This study provides insights into the role of listed stars in influencing peer firms’ CSR activities, offering important practical implications for both policymakers and managers.

Originality/value

This study extends the recent discussion on peer effects of CSR by elucidating the peer star effect on CSR and confirms that firms may adopt heterogeneous CSR practices to achieve sustainable growth by investigating peer firms’ different responses to their listed stars’ different CSR information. Moreover, by introducing the SS of founders and the pollution intensity of the industry as boundary conditions, this study enriches the research context on CSR activities.

Details

Chinese Management Studies, vol. 18 no. 1
Type: Research Article
ISSN: 1750-614X

Keywords

Article
Publication date: 27 July 2023

Ying Lu, Yunxuan Deng and Shuqi Sun

Metro stations have become a crucial aspect of urban rail transportation, integrating facilities, equipment and pedestrians. Impractical physical layout designs and pedestrian…

Abstract

Purpose

Metro stations have become a crucial aspect of urban rail transportation, integrating facilities, equipment and pedestrians. Impractical physical layout designs and pedestrian psychology impact the effectiveness of an evacuation during a metro fire. Prior research on emergency evacuation has overlooked the complexity of metro stations and failed to adequately consider the physical heterogeneity of stations and pedestrian psychology. Therefore, this study aims to develop a comprehensive evacuation optimization strategy for metro stations by applying the concept of design for safety (DFS) to an emergency evacuation. This approach offers novel insights into the management of complex systems in metro stations during emergencies.

Design/methodology/approach

Physical and social factors affecting evacuations are identified. Moreover, the social force model (SFM) is modified by combining the fire dynamics model (FDM) and considering pedestrians' impatience and panic psychology. Based on the Nanjing South Metro Station, a multiagent-based simulation (MABS) model is developed. Finally, based on DFS, optimization strategies for metro stations are suggested.

Findings

The most effective evacuation occurs when the width of the stairs is 3 meters and the transfer corridor is 14 meters. Additionally, a luggage disposal area should be set up. The exit strategy of the fewest evacuees is better than the nearest-exit strategy, and the staff in the metro station should guide pedestrians correctly.

Originality/value

Previous studies rarely consider metro stations as sociotechnical systems or apply DFS to proactively reduce evacuation risks. This study provides a new perspective on the evacuation framework of metro stations, which can guide the designers and managers of metro stations.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 3 April 2024

Lili Gao, Xicheng Zhang, Xiaopeng Deng, Na Zhang and Ying Lu

This study aims to investigate the relationship between individual-level psychological resources and team resilience in the context of expatriate project management teams. It…

Abstract

Purpose

This study aims to investigate the relationship between individual-level psychological resources and team resilience in the context of expatriate project management teams. It seeks to understand how personal psychological resources contribute to team resilience and explore the dynamic evolution mechanism of team resilience. The goal is to enhance team resilience among expatriates in a BANI (Brittle, Anxious, Nonlinear, and Incomprehensible) world, where organizations face volatile and uncertain conditions.

Design/methodology/approach

An online survey was applied for data collection, and 315 valid samples from Chinese expatriates in international construction projects were utilized for data analysis. A structural equation model (SEM) examines the relationships between personal psychological resources and team resilience. The study identifies five psychological factors influencing team resilience: Employee Resilience, Cross-cultural Adjustment, Self-efficacy, Social Support, and Team Climate. The hypothesized relationships are validated through the SEM analysis. Additionally, a fuzzy cognitive map (FCM) is constructed to explore the dynamic mechanism of team resilience formation based on the results of the SEM.

Findings

The SEM analysis confirms that employee resilience, cross-cultural adjustment, and team climate positively impact team resilience. Social support and self-efficacy also have positive effects on team climate. Moreover, team climate is found to fully mediate the relationship between self-efficacy and team resilience, as well as between social support and team resilience. The FCM model provides further insights into the dynamic evolution of team resilience, highlighting the varying impact effects of antecedents during the team resilience development process and the effectiveness of different combinations of intervention strategies.

Originality/value

This study contributes to understanding team resilience by identifying the psychological factors influencing team resilience in expatriate project management teams. The findings emphasize the importance of social support and team climate in promoting team resilience. Interventions targeting team climate are found to facilitate the rapid development of team resilience. In contrast, interventions for social support are necessary for sustainable, long-term high levels of team resilience. Based on the dynamic simulation results, strategies for cultivating team resilience through external intervention and internal adjustment are proposed, focusing on social support and team climate. Implementing these strategies can enhance project management team resilience and improve the core competitiveness of contractors in the BANI era.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 27 July 2023

Qaiser Uz Zaman Khan, Muhammad Farhan and Ali Raza

The main purpose of this study is to examine the damage behavior of flexural members under different loading conditions. The finite element model is proposed for the prediction of…

Abstract

Purpose

The main purpose of this study is to examine the damage behavior of flexural members under different loading conditions. The finite element model is proposed for the prediction of modal parameters, damage assessment and damage detection of flexural members. Moreover, the analysis of flexural members has been done for the sensor arrangement to accurately predict the damage parameters without the laborious work of experimentation in the laboratory.

Design/methodology/approach

Beam-like structures are structures that are subjected to flexural loadings that are involved in almost every type of civil engineering construction like buildings, bridges, etc. Experimental Modal Analysis (EMA) is a popular technique to detect damages in structures without requiring tough and complex methods. Experimental work conducted in this study concludes that a structure experiences high changes in modal properties once when cracking occurs and then at the stage where cracks start at the critical neutral axis. Moreover, among the various modal parameters of the flexural members, natural frequency and mode shapes are the viable parameters for the damage detection.

Findings

For torsional mode, drop in natural frequency is high for higher damages as compared to low levels. This is because of the opening and closing of cracks in modal testing. When damage occurs in the structure, there is a reduction in the magnitude of the FRF plot. The measure of this drop can also lead to damage assessment in addition to damage detection. The natural frequency of the system is the most reliable modal parameter in detecting damages. However, for damage localization, the next step after damage assessment, mode shapes can be more helpful as compared to all other parameters.

Originality/value

Effect on Dynamic Properties of Flexural Members during the Progressive Deterioration of Reinforced Concrete Structures is studied.

Details

Multidiscipline Modeling in Materials and Structures, vol. 19 no. 5
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 17 January 2022

Thu Trang Thi Ngo, Hong Quan Nguyen, Timothy Gorman, Quang Ngo Xuan, Phuong Lan Thi Ngo and Ann Vanreusel

Drought and salinity intrusion aggravated by climate change threaten agricultural livelihoods in Viet Nan's Mekong Delta. In response, authorities have built water management…

Abstract

Purpose

Drought and salinity intrusion aggravated by climate change threaten agricultural livelihoods in Viet Nan's Mekong Delta. In response, authorities have built water management infrastructure for irrigation and salinity protection. This study assessed the impact of one such project, the Ba Lai dam in Ben Tre province, on the livelihoods of aquaculture farmers.

Design/methodology/approach

This study uses the Sustainable Livelihoods Framework to assess the impact of the Ba Lai dam on the livelihood capitals of 18 farming households in four communes, located both upstream and downstream of the dam.

Findings

The authors find that, apart from some positive effects, the dam has also brought negative environmental consequences, such as increased water pollution. The authors also find that farmers have responded to the changes by adapting their livelihood practices.

Research limitations/implications

The samples were relatively small, encompassing four communes in Ben Tre province. On the other hand, this case study is instructive to the many ongoing infrastructure projects in the Vietnamese Mekong Delta.

Social implications

The project have caused an increase in water-related social conflict.

Originality/value

The case of the Ba Lai dam provides a cautionary example for infrastructure-based water management plans, both in Viet Nam and more broadly. The study suggests the need to strengthen community participation and prioritize impacts of farmers' capital assets when constructing water management infrastructure for climate change adaptation.

Details

Journal of Agribusiness in Developing and Emerging Economies, vol. 13 no. 3
Type: Research Article
ISSN: 2044-0839

Keywords

1 – 6 of 6