Search results

11 – 20 of over 31000
Article
Publication date: 19 June 2009

Imam Machdi, Toshiyuki Amagasa and Hiroyuki Kitagawa

The purpose of this paper is to propose Extensible Markup Language (XML) data partitioning schemes that can cope with static and dynamic allocation for parallel holistic twig…

Abstract

Purpose

The purpose of this paper is to propose Extensible Markup Language (XML) data partitioning schemes that can cope with static and dynamic allocation for parallel holistic twig joins: grid metadata model for XML (GMX) and streams‐based partitioning method for XML (SPX).

Design/methodology/approach

GMX exploits the relationships between XML documents and query patterns to perform workload‐aware partitioning of XML data. Specifically, the paper constructs a two‐dimensional model with a document dimension and a query dimension in which each object in a dimension is composed from XML metadata related to the dimension. GMX provides a set of XML data partitioning methods that include document clustering, query clustering, document‐based refinement, query‐based refinement, and query‐path refinement, thereby enabling XML data partitioning based on the static information of XML metadata. In contrast, SPX explores the structural relationships of query elements and a range‐containment property of XML streams to generate partitions and allocate them to cluster nodes on‐the‐fly.

Findings

GMX provides several salient features: a set of partition granularities that balance workloads of query processing costs among cluster nodes statically; inter‐query parallelism as well as intra‐query parallelism at multiple extents; and better parallel query performance when all estimated queries are executed simultaneously to meet their probability of query occurrences in the system. SPX also offers the following features: minimal computation time to generate partitions; balancing skewed workloads dynamically on the system; producing higher intra‐query parallelism; and gaining better parallel query performance.

Research limitations/implications

The current status of the proposed XML data partitioning schemes does not take into account XML data updates, e.g. new XML documents and query pattern changes submitted by users on the system.

Practical implications

Note that effectiveness of the XML data partitioning schemes mainly relies on the accuracy of the cost model to estimate query processing costs. The cost model must be adjusted to reflect characteristics of a system platform used in the implementation.

Originality/value

This paper proposes novel schemes of conducting XML data partitioning to achieve both static and dynamic workload balance.

Details

International Journal of Web Information Systems, vol. 5 no. 2
Type: Research Article
ISSN: 1744-0084

Keywords

Article
Publication date: 22 April 2022

Seyed Salar Sefati, Simona Halunga and Roya Zareh Farkhady

Flying ad hoc networks (FANETs) have a major effect in various areas such as civil projects and smart cities. The facilities of installation and low cost of unmanned aerial…

Abstract

Purpose

Flying ad hoc networks (FANETs) have a major effect in various areas such as civil projects and smart cities. The facilities of installation and low cost of unmanned aerial vehicles (UAVs) have created a new challenge for researchers. Cluster head (CH) selection and load balancing between the CH are the most critical issues in the FANETs. For CH selection and load balancing in FANETs, this study used efficient clustering to address both problems and overcome these challenges. This paper aims to propose a novel CH selection and load balancing scheme to solve the low energy consumption and low latency in the FANET system.

Design/methodology/approach

This paper tried to select the CH and load balancing with the help of low-energy adaptive clustering hierarchy (LEACH) algorithm and bat algorithm (BA). Load balancing and CH selection are NP-hard problems, so the metaheuristic algorithms can be the best answer for these issues. In the LEACH algorithm, UAVs randomly generate numerical, and these numbers are sorted according to those values. To use the load balancing, the threshold of CH has to be considered; if the threshold is less than 0.7, the BA starts working and begins to find new CH according to the emitted pulses.

Findings

The proposed method compares with three algorithms, called bio-inspired clustering scheme FANETs, Grey wolf optimization and ant colony optimization in the NS3 simulator. The proposed algorithm has a good efficiency with respect to the network lifetime, energy consumption and cluster building time.

Originality/value

This study aims to extend the UAV group control concepts to include CH selection and load balancing to improve UAV energy consumption and low latency.

Details

Aircraft Engineering and Aerospace Technology, vol. 94 no. 8
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 6 July 2020

Pooja Arora and Anurag Dixit

The advancements in the cloud computing has gained the attention of several researchers to provide on-demand network access to users with shared resources. Cloud computing is…

Abstract

Purpose

The advancements in the cloud computing has gained the attention of several researchers to provide on-demand network access to users with shared resources. Cloud computing is important a research direction that can provide platforms and softwares to clients using internet. However, handling huge number of tasks in cloud infrastructure is a complicated task. Thus, it needs a load balancing (LB) method for allocating tasks to virtual machines (VMs) without influencing system performance. This paper aims to develop a technique for LB in cloud using optimization algorithms.

Design/methodology/approach

This paper proposes a hybrid optimization technique, named elephant herding-based grey wolf optimizer (EHGWO), in the cloud computing model for LB by determining the optimal VMs for executing the reallocated tasks. The proposed EHGWO is derived by incorporating elephant herding optimization (EHO) in grey wolf optimizer (GWO) such that the tasks are allocated to the VM by eliminating the tasks from overloaded VM by maintaining the system performance. Here, the load of physical machine (PM), capacity and load of VM is computed for deciding whether the LB has to be done or not. Moreover, two pick factors, namely, task pick factor (TPF) and VM pick factor (VPF), are considered for choosing the tasks for reallocating them from overloaded VM to underloaded VM. The proposed EHGWO decides the task to be allocated in the VM based on the newly derived fitness functions.

Findings

The minimum load and makespan obtained in the existing methods, constraint measure based LB (CMLB), fractional dragonfly based LB algorithm (FDLA), EHO, GWO and proposed EHGWO for the maximum number of VMs is illustrated. The proposed EHGWO attained minimum makespan with value 814,264 ns and minimum load with value 0.0221, respectively. Meanwhile, the makespan values attained by existing CMLB, FDLA, EHO, GWO, are 318,6896 ns, 230,9140 ns, 1,804,851 ns and 1,073,863 ns, respectively. The minimum load values computed by existing methods, CMLB, FDLA, EHO, GWO, are 0.0587, 0.026, 0.0248 and 0.0234. On the other hand, the proposed EHGWO with minimum load value is 0.0221. Hence, the proposed EHGWO attains maximum performance as compared to the existing technique.

Originality/value

This paper illustrates the proposed LB algorithm using EHGWO in a cloud computing model using two pitch factors, named TPF and VPF. For initiating LB, the tasks assigned to the overloaded VM are reallocated to under loaded VMs. Here, the proposed LB algorithm adapts capacity and loads for the reallocation. Based on TPF and VPF, the tasks are reallocated from VMs using the proposed EHGWO. The proposed EHGWO is developed by integrating EHO and GWO algorithm using a new fitness function formulated by load of VM, migration cost, load of VM, capacity of VM and makespan. The proposed EHGWO is analyzed based on load and makespan.

Details

International Journal of Pervasive Computing and Communications, vol. 16 no. 3
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 5 October 2022

Sophiya Shiekh, Mohammad Shahid, Manas Sambare, Raza Abbas Haidri and Dileep Kumar Yadav

Cloud computing gives several on-demand infrastructural services by dynamically pooling heterogeneous resources to cater to users’ applications. The task scheduling needs to be…

71

Abstract

Purpose

Cloud computing gives several on-demand infrastructural services by dynamically pooling heterogeneous resources to cater to users’ applications. The task scheduling needs to be done optimally to achieve proficient results in a cloud computing environment. While satisfying the user’s requirements in a cloud environment, scheduling has been proven an NP-hard problem. Therefore, it leaves scope to develop new allocation models for the problem. The aim of the study is to develop load balancing method to maximize the resource utilization in cloud environment.

Design/methodology/approach

In this paper, the parallelized task allocation with load balancing (PTAL) hybrid heuristic is proposed for jobs coming from various users. These jobs are allocated on the resources one by one in a parallelized manner as they arrive in the cloud system. The novel algorithm works in three phases: parallelization, task allocation and task reallocation. The proposed model is designed for efficient task allocation, reallocation of resources and adequate load balancing to achieve better quality of service (QoS) results.

Findings

The acquired empirical results show that PTAL performs better than other scheduling strategies under various cases for different QoS parameters under study.

Originality/value

The outcome has been examined for the real data set to evaluate it with different state-of-the-art heuristics having comparable objective parameters.

Details

International Journal of Pervasive Computing and Communications, vol. 19 no. 5
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 2 February 2015

Hamid Yilmaz and Mustafa Yilmaz

The purpose of this paper is balancing multi-manned assembly lines with load-balancing constraints in addition to conventional ones Most research works about the multi-manned…

Abstract

Purpose

The purpose of this paper is balancing multi-manned assembly lines with load-balancing constraints in addition to conventional ones Most research works about the multi-manned assembly line balancing problems are focused on the conventional industrial measures that minimize total number of workers, number of multi-manned workstations or both.

Design/methodology/approach

This paper provides a remedial constraint for the model to balance task load density for each worker in workstations.

Findings

Comparisons between the proposed mathematical model and the existing multi-manned mathematical model show a quite promising better task load density performance for the proposed approach.

Originality/value

In this paper, a mathematical model that combines the minimization of multi-manned stations, worker numbers and difference of task load density of workers is proposed for the first time.

Details

Assembly Automation, vol. 35 no. 1
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 7 February 2020

Haiyan Zhuang and Babak Esmaeilpour Ghouchani

Virtual machines (VMs) are suggested by the providers of cloud services as the services for the users over the internet. The consolidation of VM is the tactic of the competent and…

Abstract

Purpose

Virtual machines (VMs) are suggested by the providers of cloud services as the services for the users over the internet. The consolidation of VM is the tactic of the competent and smart utilization of resources from cloud data centers. Placement of a VM is one of the significant issues in cloud computing (CC). Physical machines in a cloud environment are aware of the way of the VM placement (VMP) as the mapping VMs. The basic target of placement of VM issue is to reduce the physical machines' items that are running or the hosts in cloud data centers. The VMP methods have an important role in the CC. However, there is no systematic and complete way to discuss and analyze the algorithms. The purpose of this paper is to present a systematic survey of VMP techniques. Also, the benefits and weaknesses connected with selected VMP techniques have been debated, and the significant issues of these techniques are addressed to develop the more efficient VMP technique for the future.

Design/methodology/approach

Because of the importance of VMP in the cloud environments, in this paper, the articles and important mechanisms in this domain have been investigated systematically. The VMP mechanisms have been categorized into two major groups, including static and dynamic mechanisms.

Findings

The results have indicated that an appropriate VMP has the capacity to decrease the resource consumption rate, energy consumption and carbon emission rate. VMP approaches in computing environment still need improvements in terms of reducing related overhead, consolidation of the cloud environment to become an extremely on-demand mechanism, balancing the load between physical machines, power consumption and refining performance.

Research limitations/implications

This study aimed to be comprehensive, but there were some limitations. Some perfect work may be eliminated because of applying some filters to choose the original articles. Surveying all the papers on the topic of VMP is impossible, too. Nevertheless, the authors are trying to present a complete survey over the VMP.

Practical implications

The consequences of this research will be valuable for academicians, and it can provide good ideas for future research in this domain. By providing comparative information and analyzing the contemporary developments in this area, this research will directly support academics and working professionals for better knowing the growth in the VMP area.

Originality/value

The gathered information in this paper helps to inform the researchers with the state of the art in the VMP area. Totally, the VMP's principal intention, current challenges, open issues, strategies and mechanisms in cloud systems are summarized by explaining the answers.

Details

Kybernetes, vol. 50 no. 2
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 1 December 1999

Tzong‐Ru Lee and Ji‐Hwa Ueng

In a modern business environment, employees are a key resource to a company. Hence, the competitiveness of a company depends largely on its ability to treat employees fairly…

3413

Abstract

In a modern business environment, employees are a key resource to a company. Hence, the competitiveness of a company depends largely on its ability to treat employees fairly. Fairness can be attained by using the loadbalancing methodology. Develops an integer programming model for vehicle routing problems. There are two objectives, first, to minimize the total distance, and second, to balance the workload among employees as much as possible. We also develop a heuristic algorithm to solve the problems. The findings show that the proposed heuristic algorithm performs well to our 11 test cases.

Details

International Journal of Physical Distribution & Logistics Management, vol. 29 no. 10
Type: Research Article
ISSN: 0960-0035

Keywords

Article
Publication date: 29 March 2019

Zhihang He, Wei Wang, Huaping Ruan, Yanzhang Yao, Xuelong Li, Dehua Zou, Yu Yan and Shaochun Jia

Overhead high-voltage transmission line (HVTL) inspection robots are used to inspect the transmission lines and/or maintain the infrastructures of a power transmission grid. One…

Abstract

Purpose

Overhead high-voltage transmission line (HVTL) inspection robots are used to inspect the transmission lines and/or maintain the infrastructures of a power transmission grid. One of the most serious problems is that the load on the front wheel is much larger than that on the back one when the robot travels along a sloping earth wire. Thus, ongoing operation of the inspection robot mainly depends on the front wheel motor’s ability. This paper aims to extend continuous operation time of the HVTL inspection robots.

Design/methodology/approach

By introducing a traction force model, the authors have established a dynamic model of the robot with slip. The total load is evenly distributed to both wheels. According to the traction force model, the desired wheel slip is calculated to achieve the goal of load balance. A wheel slip controller was designed based on second-order sliding-mode control methodology.

Findings

This controller accomplishes the control objective, such that the actual wheel slip tracks the desired wheel slip. A simulation and experiment verify the feasibility of the load balance control system. These results indicate that the loads on both wheels are generally equal.

Originality/value

By balancing the loads on both wheels, the inspection robot can travel along the earth wire longer, improving its efficiency.

Details

Industrial Robot: the international journal of robotics research and application, vol. 46 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 1 February 2001

Layne T. Watson and Chuck A. Baker

The n‐dimensional direct search algorithm, DIRECT, developed by Jones, Perttunen, and Stuckman has attracted recent attention from the multidisciplinary design optimization…

Abstract

The n‐dimensional direct search algorithm, DIRECT, developed by Jones, Perttunen, and Stuckman has attracted recent attention from the multidisciplinary design optimization community. Since DIRECT only requires function values (or ranking) and balances global exploration with local refinement better than n‐dimensional bisection, it is well suited to the noisy function values typical of realistic simulations. While not efficient for high accuracy optimization, DIRECT is appropriate for the sort of global design space exploration done in large scale engineering design. Direct and pattern search schemes have the potential to exploit massive parallelism, but efficient use of massively parallel machines is non‐trivial to achieve. A fully‐distributed control version of DIRECT that is designed for massively parallel (distributed memory) architectures is presented. Parallel results are presented for a multidisciplinary design optimization problem – configuration design of a high speed civil transport.

Details

Engineering Computations, vol. 18 no. 1/2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 May 2001

D.R.J. Owen and Y.T. Feng

This paper outlines a dynamic domain decomposition‐based parallel strategy for combined finite/discrete element analysis of multi‐fracturing solids and discrete systems. Attention…

1480

Abstract

This paper outlines a dynamic domain decomposition‐based parallel strategy for combined finite/discrete element analysis of multi‐fracturing solids and discrete systems. Attention is focused on the parallelised interaction detection between discrete objects. Two graph representation models for discrete objects in contact are proposed which lay the foundation of the current development. In addition, a load imbalance detection and re‐balancing scheme is also suggested to enhance the parallel performance. Finally, numerical examples are provided to illustrate the parallel performance achieved with the current implementation.

Details

Engineering Computations, vol. 18 no. 3/4
Type: Research Article
ISSN: 0264-4401

Keywords

11 – 20 of over 31000