Search results

1 – 10 of 14
Article
Publication date: 30 July 2018

Yanhua Zhu, Liqiang Zhao, Pingli Liu and Ming Yang

This paper aims to introduce a method to reduce corrosion caused by acidic-oxidized polymer degradant through subsection injection with different inhibitor.

Abstract

Purpose

This paper aims to introduce a method to reduce corrosion caused by acidic-oxidized polymer degradant through subsection injection with different inhibitor.

Design/methodology/approach

This paper introduced a method to reduce corrosion caused by acidic-oxidized polymer degradant through subsection injection with different inhibitor.

Findings

The experimental results indicated that the influence of pre-corrosion status on corrosion rate and effectiveness of corrosion inhibitor are significant. The corrosion inhibitors in both injection stage inhibited the corrosion process by preventing the contact of corrosive medium and steel surface through formation of a protective film on the surface of N80 steel. The corrosion rate of polymer degradant can be reduced to 0.63 g/m 2 h through subsection injection with different inhibitor.

Originality/value

This result will increase the production of polymer injection plugging wells through expanding the application of acidic-oxidized polymer degradant.

Details

Anti-Corrosion Methods and Materials, vol. 65 no. 5
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 2 November 2018

Juan Du, Yuning He, Pingli Liu, Yigang Liu, Xianghai Meng and Liqiang Zhao

This paper aims to analyze the corrosion and corrosion inhibition of N80 in 10 per cent HCl + 8 per cent fluoroboric acid (HBF4) solution for acidizing operation.

Abstract

Purpose

This paper aims to analyze the corrosion and corrosion inhibition of N80 in 10 per cent HCl + 8 per cent fluoroboric acid (HBF4) solution for acidizing operation.

Design/methodology/approach

The corrosion rate, kinetic parameters (Ea, A) and thermodynamic parameters (ΔH, ΔS) of N80 steel in fresh acid and spent acid, 10 per cent HCl + 8 per cent HBF4, 10 per cent HCl and 8 per cent HBF4 solutions were calculated through immersion tests. The corrosion and inhibition properties were studied through X-ray diffraction and electrochemical measurements. The corrosion morphology of the corrosion product was examined by scanning electron microscopy (SEM).

Findings

The results demonstrated that the spent acid was the main cause of acidification corrosion, and the HBF4 would cause serious corrosion to N80 steel. The results showed that the N80 steel was more seriously corroded in the spent acid than in fresh acid, and the hydrolysis of HBF4 accelerates the dissolution process of N80 steel anode to control the corrosion reaction. The results showed that the acidification will definitely cause serious corrosion to the oil tube; therefore, necessary anti-corrosion measures must be taken in the acidification process.

Originality/value

The results showed that acidizing the formation with 10 per cent HCl + 8 per cent HBF4 will definitely cause serious corrosion to the oil tube, especially when the spent acid flows back. Therefore, necessary anti-corrosion measures must be taken in the acidification process, especially in the spent acid flowback stage.

Details

Anti-Corrosion Methods and Materials, vol. 66 no. 1
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 9 August 2019

Yanhua Zhu, Liqiang Zhao, Pingli Liu and Xiao Qu

In this work, a kind of Mannich base (C21H25NO) was synthesized with cinnamal aldehyde, acetophenone and diethylamine in a condensing reflux device based on the conventional…

Abstract

Purpose

In this work, a kind of Mannich base (C21H25NO) was synthesized with cinnamal aldehyde, acetophenone and diethylamine in a condensing reflux device based on the conventional method. Optimization of the inhibitor concentration was explored.

Design/methodology/approach

Spectral properties of this compound was investigated by FTIR, and its inhibition efficiency and mechanism on N80 steel in 20% hydrochloric acid solution were studied by weight loss measurement, electrochemical measurement (potentiodynamic polarization and electrochemical impedance spectroscopy) and surface analytical measurement (scanning electron microscope with energy dispersive spectrometer).

Findings

The results showed that the new inhibitor reduced the double-layer capacitance and increased the charge transfer resistance. The inhibition efficiency is 99.7% when the concentration of C21H25NO is 3%. The adsorption of C21H25NO on N80 steel surface in 20% HCl solution was found to be spontaneous and steady. Observed from the steel surface, an inhibition film was confirmed to be presented after adding inhibitor and successfully hindered the corrosive ions from reaching the bulk steel.

Originality/value

A new Mannich base (C21H25NO) was synthesized by cinnamal aldehyde, acetophenone and diethylamine for the corrosion prevention of N80 steel in 20% hydrochloric acid solution.

Details

Anti-Corrosion Methods and Materials, vol. 66 no. 5
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 22 September 2020

Pingli Liu, Yanhua Zhu and Liqiang Zhao

A novel compound was synthesized by cyclohexylamine, acetophenone and cinnamaldehyde through Mannich reaction in laboratory to use as corrosion inhibitor for steel in…

Abstract

Purpose

A novel compound was synthesized by cyclohexylamine, acetophenone and cinnamaldehyde through Mannich reaction in laboratory to use as corrosion inhibitor for steel in acidification process.

Design/methodology/approach

The corrosion and inhibition of 13Cr stainless steel in conventional acidification solution were investigated by electrochemical measurements and soaking experiments. The corrosion appearance was observed with scanning electron microscope on the whole surface of 13Cr stainless steel in 20% HCl solution, and the protection film was confirmed on the surface in presence with inhibitor.

Findings

Results manifested that the inhibitor C23H27NO can effectively inhibit the corrosion reaction by forming an adsorption layer function as a barrier. Polarization curves indicated that the mixed inhibitor can reduce anodic dissolution and cathodic hydrogen evolution reactions simultaneously. The results of impedance measurements indicated that this inhibitor cannot change the corrosion mechanism of 13Cr stainless steel in 20% HCl solution. The results of the study can provide a theoretical basis for the application of 13Cr stainless steel in conventional acidification solutions during oil well acidification construction process.

Originality/value

A novel compound was synthesized by cyclohexylamine, acetophenone and cinnamaldehyde through Mannich reaction in laboratory to use as corrosion inhibitor for steel in acidification process. The corrosion and anti-corrosion mechanism of 13Cr steel in acid solution was proposed.

Details

Anti-Corrosion Methods and Materials, vol. 67 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 6 November 2017

Liqiang Zhao, Yanhua Zhu, Pingli Liu, Jian Zhang and Yigang Liu

This paper aims to describe the corrosion behavior and possibility of inhibition by corrosion inhibitor SA1-3 in acidizing solution (5 per cent hydrochloric acid [HCl] solution)…

Abstract

Purpose

This paper aims to describe the corrosion behavior and possibility of inhibition by corrosion inhibitor SA1-3 in acidizing solution (5 per cent hydrochloric acid [HCl] solution). The study aims to explain the mechanism of corrosion and inhibition of N80 steel in 5 per cent HCl solution to provide theoretical basis for expanding the range of application of N80 steel in acidification process.

Design/methodology/approach

This paper opted for a laboratory study using simulation of acidizing solution to do the experiments. The results of experiments including weight-loss method, electrochemical method and surface analysis were used to explain the mechanism of corrosion and inhibition so as to predict the dissolution progress of N80 steel in 5 per cent HCl solution with and without inhibitor SA1-3.

Findings

This paper provides theoretical insights about how to inhibit the corrosion behavior of N80 steel in 5 per cent HCl solution. It suggests that the corrosion inhibitor which can form a protective film on the steel surface should be used to expand the application of N80 steel in acidizing solution. The inhibitor SA1-3 is a kind of cathodic corrosion-controlling inhibitor which mainly inhibits cathode corrosion; it cannot change the corrosion mechanism of N80 steel.

Originality/value

This paper provides a theoretical basis for the corrosion behavior and inhibition mechanism of N80 steel in acidizing solution.

Details

Anti-Corrosion Methods and Materials, vol. 64 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 10 February 2023

Lingfeng Dong, Jinghui (Jove) Hou, Liqiang Huang, Yuan Liu and Jie Zhang

This paper aims to explore the effects of normative and hedonic motivations on continuous knowledge contribution, and how past contribution experience moderates the effects of the…

Abstract

Purpose

This paper aims to explore the effects of normative and hedonic motivations on continuous knowledge contribution, and how past contribution experience moderates the effects of the motivations on continuous knowledge contribution.

Design/methodology/approach

Based on goal-framing theory, the present study proposes a comprehensive theoretical model by integrating normative and hedonic motivations, past contribution experience and continuous knowledge contribution. The data for virtual community members' activities were collected using the Python Scrapy crawler. Logit regression was used to validate the integrative model.

Findings

The results show that both normative motivation (reflected by generalized reciprocity and social learning) and hedonic motivation (reflected by peer recognition and online attractiveness) are positively associated with continuous knowledge contribution. Moreover, these effects are found to be significantly influenced by members' past knowledge contribution experience. Specifically, the results suggest that past knowledge contribution experience undermines the influence of generalized reciprocity on continuous knowledge contribution but strengthens the effect of peer recognition and online attractiveness.

Originality/value

Although the emerging literature on continuous knowledge contribution mainly focuses on motivations as antecedents that promote continuous knowledge contribution, most of these studies assume that the relationship between motivating mechanisms and continuous knowledge contribution does not change over time. The study is one of the initial studies to examine whether and how the influence of multiple motivations evolves relative to levels of past contribution experience.

Details

Information Technology & People, vol. 37 no. 1
Type: Research Article
ISSN: 0959-3845

Keywords

Article
Publication date: 7 May 2019

Na Fan, Liqiang Chai, Peng Wang and Jun Liang

This paper aims to study the tribocorrosion behavior of 304 stainless steel (SS) sliding against SiC and Si3N4 counterparts in artificial seawater.

Abstract

Purpose

This paper aims to study the tribocorrosion behavior of 304 stainless steel (SS) sliding against SiC and Si3N4 counterparts in artificial seawater.

Design/methodology/approach

The tribocorrosion behavior of 304SS sliding against SiC and Si3N4 balls in artificial seawater has been investigated. The tests were conducted using a ball-on-disk rig equipped with an electrochemical workstation. The friction coefficient, surface morphology, wear volume and current density were determined.

Findings

When 304SS sliding against SiC ball, a smooth surface with a silica layer was formed on the top, which led to the low friction coefficient, current density and small wear volume. For 304SS-Si3N4 tribo-pair, a lot of metal debris was scattered on contact surfaces leading to high friction coefficient, current density and big wear volume.

Research limitations/implications

This research suggests that the lubrication effect of silicon-based ceramics is related to counterpart specimen in artificial seawater.

Practical implications

The results may help us to choose the appropriate ceramic ball under seawater environment.

Originality/value

The main originality of the work is to reveal the tribocorrosion behavior of 304SS sliding against SiC and Si3N4 balls, which help us to realize that the Si3N4 ball as water-lubricated ceramics could not exhibit lubrication effect when coupled with 304SS in artificial seawater.

Details

Industrial Lubrication and Tribology, vol. 71 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 5 May 2015

Yunqing Tang, Liqiang Zhang, Haiying Yang, Juan Guo, Ningbo Liao and Ping Yang

– The purpose of this paper is to investigate thermal properties at Cu/Al interfaces.

Abstract

Purpose

The purpose of this paper is to investigate thermal properties at Cu/Al interfaces.

Design/methodology/approach

A hybrid (molecular dynamics-interface stress element-finite element model (MD-ISE-FE) model is constructed to describe thermal behaviors at Cu/Al interfaces. The heat transfer simulation is performed after the non-ideal Cu/Al interface is constructed by diffusion bonding.

Findings

The simulation shows that the interfacial thermal resistance is decreasing with the increase of bonding temperature; while the interfacial region thickness and interfacial thermal conductivity are increasing with similar trends when the bonding temperature is increasing. It indicates that the higher bonding temperature can improve thermal properties of the interface structure.

Originality/value

The MD-ISE-FE model proposed in this paper is computationally efficient for interfacial heat transfer problems, and could be used in investigations of other interfacial behaviors of dissimilar materials. All these are helpful for the understanding of thermal properties of wire bonding interface structures. It implies that the MD-ISE-FE multiscale modeling approach would be a potential method for design and analysis of interfacial characteristics in micro/nano assembly.

Details

Engineering Computations, vol. 32 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 7 March 2016

Fei Zhong, Chunlei Zhang, Wensheng Li, Jingpin Jiao and Liqiang Zhong

Super304H steel is a new fine-grained austenitic heat-resistant stainless steel developed in recent years, and it is widely used in high temperature section superheater and…

Abstract

Purpose

Super304H steel is a new fine-grained austenitic heat-resistant stainless steel developed in recent years, and it is widely used in high temperature section superheater and reheater tubes of ultra-supercritical thermal power units’ boiler. Currently intergranular corrosion (IGC) has occurred in a few austenitic stainless steel tubes in ultra-supercritical units and led to boiler leakage. The purpose of this paper is to find a nondestructive method to quickly and easily detect IGC of austenitic stainless steel tube.

Design/methodology/approach

This paper uses the nonlinear characteristics of ultrasonic propagation in steel tube to detect the IGC of Super304H tube.

Findings

The experimental results show that the nonlinear coefficient generally increases sensitively with the degree of IGC; hence, the nonlinear coefficient can be used to assess IGC degree of tubes, and the nonlinear coefficient measurement method is repeatable for the same tube.

Research limitations/implications

A theory of how IGC would affect the ultrasonic signals and lead to a nonlinear response needs further research.

Practical implications

A nondestructive method to quickly and easily detect IGC is provided.

Social implications

Using ultrasonic nonlinear coefficient to assess IGC degree of tubes is a new try.

Originality/value

This paper provides a new way to test IGC.

Details

Anti-Corrosion Methods and Materials, vol. 63 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 22 December 2021

C. Ganeshkumar, Sanjay Kumar Jena, A. Sivakumar and T. Nambirajan

This paper is a literature review on use of artificial intelligence (AI) among agricultural value chain (AVC) actors, and it brings out gaps in research in this area and provides…

1279

Abstract

Purpose

This paper is a literature review on use of artificial intelligence (AI) among agricultural value chain (AVC) actors, and it brings out gaps in research in this area and provides directions for future research.

Design/methodology/approach

The authors systematically collected literature from several databases covering 25 years (1994–2020). They classified literature based on AVC actors present in different stages of AVC. The literature was analysed using Nvivo 12 (qualitative software) for descriptive and content analysis.

Findings

Fifty percent of the reviewed studies were empirical, and 35% were conceptual. The review showed that AI adoption in AVC could increase agriculture income, enhance competitiveness and reduce cost. Among the AVC stages, AI research related to agricultural processing and consumer sector was very low compared to input, production and quality testing. Most AVC actors widely used deep learning algorithm of artificial neural networks in various aspects such as water resource management, yield prediction, price/demand forecasting, energy efficiency, optimalization of fertilizer/pesticide usage, crop planning, personalized advisement and predicting consumer behaviour.

Research limitations/implications

The authors have considered only AI in the AVC, AI use in any other sector and not related to value chain actors were not included in the study.

Originality/value

Earlier studies focussed on AI use in specific areas and actors in the AVC such as inputs, farming, processing, distribution and so on. There were no studies focussed on the entire AVC and the use of AI. This review has filled that literature gap.

Details

Journal of Agribusiness in Developing and Emerging Economies, vol. 13 no. 3
Type: Research Article
ISSN: 2044-0839

Keywords

1 – 10 of 14