Search results

1 – 4 of 4
Article
Publication date: 19 December 2018

Farshid Mirzaee and Nasrin Samadyar

The purpose of this paper is to develop a new method based on operational matrices of Bernoulli wavelet for solving linear stochastic Itô-Volterra integral equations, numerically.

Abstract

Purpose

The purpose of this paper is to develop a new method based on operational matrices of Bernoulli wavelet for solving linear stochastic Itô-Volterra integral equations, numerically.

Design/methodology/approach

For this aim, Bernoulli polynomials and Bernoulli wavelet are introduced, and their properties are expressed. Then, the operational matrix and the stochastic operational matrix of integration based on Bernoulli wavelet are calculated for the first time.

Findings

By applying these matrices, the main problem would be transformed into a linear system of algebraic equations which can be solved by using a suitable numerical method. Also, a few results related to error estimate and convergence analysis of the proposed scheme are investigated.

Originality/value

Two numerical examples are included to demonstrate the accuracy and efficiency of the proposed method. All of the numerical calculation is performed on a personal computer by running some codes written in MATLAB software.

Details

Multidiscipline Modeling in Materials and Structures, vol. 15 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 14 May 2020

S. Saha Ray and S. Singh

This paper aims to study fractional Brownian motion and its applications to nonlinear stochastic integral equations. Bernstein polynomials have been applied to obtain the…

Abstract

Purpose

This paper aims to study fractional Brownian motion and its applications to nonlinear stochastic integral equations. Bernstein polynomials have been applied to obtain the numerical results of the nonlinear fractional stochastic integral equations.

Design/methodology/approach

Bernstein polynomials have been used to obtain the numerical solutions of nonlinear fractional stochastic integral equations. The fractional stochastic operational matrix based on Bernstein polynomial has been used to discretize the nonlinear fractional stochastic integral equation. Convergence and error analysis of the proposed method have been discussed.

Findings

Two illustrated examples have been presented to justify the efficiency and applicability of the proposed method. The corresponding obtained numerical results have been compared with the exact solutions to establish the accuracy and efficiency of the proposed method.

Originality/value

To the best of the authors’ knowledge, nonlinear stochastic Itô–Volterra integral equation driven by fractional Brownian motion has been for the first time solved by using Bernstein polynomials. The obtained numerical results well establish the accuracy and efficiency of the proposed method.

Article
Publication date: 9 April 2021

Jiao Wang

This paper aims to propose an efficient and convenient numerical algorithm for two-dimensional nonlinear Volterra-Fredholm integral equations and fractional integro-differential…

Abstract

Purpose

This paper aims to propose an efficient and convenient numerical algorithm for two-dimensional nonlinear Volterra-Fredholm integral equations and fractional integro-differential equations (of Hammerstein and mixed types).

Design/methodology/approach

The main idea of the presented algorithm is to combine Bernoulli polynomials approximation with Caputo fractional derivative and numerical integral transformation to reduce the studied two-dimensional nonlinear Volterra-Fredholm integral equations and fractional integro-differential equations to easily solved algebraic equations.

Findings

Without considering the integral operational matrix, this algorithm will adopt straightforward discrete data integral transformation, which can do good work to less computation and high precision. Besides, combining the convenient fractional differential operator of Bernoulli basis polynomials with the least-squares method, numerical solutions of the studied equations can be obtained quickly. Illustrative examples are given to show that the proposed technique has better precision than other numerical methods.

Originality/value

The proposed algorithm is efficient for the considered two-dimensional nonlinear Volterra-Fredholm integral equations and fractional integro-differential equations. As its convenience, the computation of numerical solutions is time-saving and more accurate.

Article
Publication date: 2 September 2019

Farshid Mirzaee and Sahar Alipour

The purpose of this paper is to develop a new method based on operational matrices of two-dimensional delta functions for solving two-dimensional nonlinear quadratic integral

Abstract

Purpose

The purpose of this paper is to develop a new method based on operational matrices of two-dimensional delta functions for solving two-dimensional nonlinear quadratic integral equations (2D-QIEs) of fractional order, numerically.

Design/methodology/approach

For this aim, two-dimensional delta functions are introduced, and their properties are expressed. Then, the fractional operational matrix of integration based on two-dimensional delta functions is calculated for the first time.

Findings

By applying the operational matrices, the main problem would be transformed into a nonlinear system of algebraic equations which can be solved by using Newton's iterative method. Also, a few results related to error estimate and convergence analysis of the proposed method are investigated.

Originality/value

Two numerical examples are presented to show the validity and applicability of the suggested approach. All of the numerical calculation is performed on a personal computer by running some codes written in MATLAB software.

Details

Multidiscipline Modeling in Materials and Structures, vol. 15 no. 6
Type: Research Article
ISSN: 1573-6105

Keywords

1 – 4 of 4