Search results

1 – 7 of 7
Article
Publication date: 4 June 2024

Adebowale Martins Obalalu, Adil Darvesh, Lateefat Aselebe, Sulyman Olakunle Salawu and Kazeem Issa

The primary focus of this study is to tackle a critical industry issue concerning energy inefficiency. This is achieved through an investigation into enhancing heat transfer in…

Abstract

Purpose

The primary focus of this study is to tackle a critical industry issue concerning energy inefficiency. This is achieved through an investigation into enhancing heat transfer in solar radiation phenomena on a curved surface. The problem formulation of governing equations includes the combined effects of thermal relaxation, Newtonian heating, radiation mechanism, and Darcy-Forchheimer to enhance the uniqueness of the model. This research employs the Cattaneo–Christov heat theory model to investigate the thermal flux via utilizing the above-mentioned phenomenon with a purpose of advancing thermal technology. A mixture of silicon dioxide (SiO_2)\ and Molybdenum disulfide (MoS_2) is considered for the nanoparticle’s thermal propagation in base solvent propylene glycol. The simulation of the modeled equations is solved using the Shifted Legendre collocation scheme (SLCS). The findings show that, the solar radiation effects boosted the heating performance of the hybrid nanofluid. Furthermore, the heat transmission progress increases against the curvature and thermal relaxation parameter.

Design/methodology/approach

Shifted Legendre collocation scheme (SLCS) is utilized to solve the simulation of the modeled equations.

Findings

The findings show that, the solar radiation effects boosted the heating performance of the hybrid nanofluid. The heat transmission progress increase against the curvature and thermal relaxation parameter.

Originality/value

This research employs the Cattaneo–Christov heat theory model to investigate the thermal flux via utilizing the above-mentioned phenomenon with a purpose of advancing thermal technology.

Details

Multidiscipline Modeling in Materials and Structures, vol. 20 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 3 July 2024

Anett Kenderes, Szabolcs Gyimóthy and Péter Tamás Benk

The purpose of this paper is to investigate the influence of measurement uncertainties and the environment characteristics themselves on the desired field uniformity (FU) in…

Abstract

Purpose

The purpose of this paper is to investigate the influence of measurement uncertainties and the environment characteristics themselves on the desired field uniformity (FU) in reverberation chambers (RCs) by means of state-of-the-art global sensitivity analysis techniques. There are many quantities to describe the FU. The authors attempted to inspect many of the most important ones in two different orientations of the stirrer (horizontal, vertical).

Design/methodology/approach

Surrogate modelling techniques are involved to compute the Sobol’ indices efficiently with a modest number of required electromagnetic (EM) simulations. This can be only achieved if the behaviour of an appropriately chosen output quantity is predictable in such a way, which enables to extract useful information. Therefore, this choice should be made with extra care of the stochastic fluctuations, which have to be as low as possible. To this end, in this paper, various figures of merit are investigated.

Findings

This method can provide useful knowledge in the lower frequency range, where the ideal properties of the EM field in RCs cannot be established, and the importance of the setup parameters can vary from configuration to configuration.

Originality/value

Considering the current research tendencies related to RCs, the application of the method of Sobol’ indices to RCs is unique, which has only been done by the authors of this work so far. The main contribution presented in the paper is the thorough investigation of the effect of configuration parameters on the statistical properties of RCs through many output quantities describing the FU.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 43 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 23 September 2024

Gauthier Derenty-Camenen, Alexis Lepot, Olivier Chadebec, Olivier Pinaud, Laure-Line Rouve and Steeve Zozor

The purpose of this paper is to propose a compact model to represent the magnetic field outside the sources. This model provides the multipolar ordering of a spherical harmonic…

Abstract

Purpose

The purpose of this paper is to propose a compact model to represent the magnetic field outside the sources. This model provides the multipolar ordering of a spherical harmonic expansion far from the source while being valid in its close proximity.

Design/methodology/approach

The authors investigate equivalent surface sources that enable to compute the field very close to any chosen surface that encloses the source. Then the authors present a method to find an appropriate initial basis and its associated inner product that allow to construct multipolar harmonic bases for these equivalent sources, where any vector of order k produces a field that decreases at least as fast as the field produced by a multipole of order k. Finally, those bases are numerically implemented to demonstrate their performances, both far from the source and in its close proximity.

Findings

The charge distribution and normal dipole distribution are well-suited to construct multipolar harmonic bases of equivalent sources. These bases can be described by as few parameters as the decreasing spherical harmonic expansion. Comparison with other numerical models shows its ability to compute the field both far from the source and close to it.

Originality/value

A basis for normal dipole distribution has already been described in the literature. This paper presents a general method to construct a multipolar basis for equivalent sources and uses it to construct a basis for single-layer potential.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 2 September 2024

R. Rajaraman

This study explores the immobilisation of enzymes within porous catalysts of various geometries, including spheres, cylinders and flat pellets. The objective is to understand the…

Abstract

Purpose

This study explores the immobilisation of enzymes within porous catalysts of various geometries, including spheres, cylinders and flat pellets. The objective is to understand the irreversible Michaelis-Menten kinetic process within immobilised enzymes through advanced mathematical modelling.

Design/methodology/approach

Mathematical models were developed based on reaction-diffusion equations incorporating nonlinear variables associated with Michaelis-Menten kinetics. This research introduces fractional derivatives to investigate enzyme reaction kinetics, addressing a significant gap in the existing literature. A novel approximation method, based on the independent polynomials of the complete bipartite graph, is employed to explore solutions for substrate concentration and effectiveness factor across a spectrum of parameter values. The analytical solutions generated through the bipartite polynomial approximation method (BPAM) are rigorously tested against established methods, including the Bernoulli wavelet method (BWM), Taylor series method (TSM), Adomian decomposition method (ADM) and fourth-order Runge-Kutta method (RKM).

Findings

The study identifies two main findings. Firstly, the behaviour of dimensionless substrate concentration with distance is analysed for planar, cylindrical and spherical catalysts using both integer and fractional order Michaelis-Menten modelling. Secondly, the research investigates the variability of the dimensionless effectiveness factor with the Thiele modulus.

Research limitations/implications

The study primarily focuses on mathematical modelling and theoretical analysis, with limited experimental validation. Future research should involve more extensive experimental verification to corroborate the findings. Additionally, the study assumes ideal conditions and uniform catalyst properties, which may not fully reflect real-world complexities. Incorporating factors such as mass transfer limitations, non-uniform catalyst structures and enzyme deactivation kinetics could enhance the model’s accuracy and broaden its applicability. Furthermore, extending the analysis to include multi-enzyme systems and complex reaction networks would provide a more comprehensive understanding of biocatalytic processes.

Practical implications

The validated bipartite polynomial approximation method presents a practical tool for optimizing enzyme reactor design and operation in industrial settings. By accurately predicting substrate concentration and effectiveness factor, this approach enables efficient utilization of immobilised enzymes within porous catalysts. Implementation of these findings can lead to enhanced process efficiency, reduced operating costs and improved product yields in various biocatalytic applications such as pharmaceuticals, food processing and biofuel production. Additionally, this research fosters innovation in enzyme immobilisation techniques, offering practical insights for engineers and researchers striving to develop sustainable and economically viable bioprocesses.

Social implications

The advancement of enzyme immobilisation techniques holds promise for addressing societal challenges such as sustainable production, environmental protection and healthcare. By enabling more efficient biocatalytic processes, this research contributes to reducing industrial waste, minimizing energy consumption and enhancing access to pharmaceuticals and bio-based products. Moreover, the development of eco-friendly manufacturing practices through biocatalysis aligns with global efforts towards sustainability and mitigating climate change. The widespread adoption of these technologies can foster a more environmentally conscious society while stimulating economic growth and innovation in biotechnology and related industries.

Originality/value

This study offers a pioneering approximation method using the independent polynomials of the complete bipartite graph to investigate enzyme reaction kinetics. The comprehensive validation of this method through comparison with established solution techniques ensures its reliability and accuracy. The findings hold promise for advancing the field of biocatalysts and provide valuable insights for designing efficient enzyme reactors.

Article
Publication date: 22 August 2024

Sandipan Kumar Das

The boundary integral method (BIM) is very attractive to practicing engineers as it reduces the dimensionality of the problem by one, thereby making the procedure computationally…

Abstract

Purpose

The boundary integral method (BIM) is very attractive to practicing engineers as it reduces the dimensionality of the problem by one, thereby making the procedure computationally inexpensive compared to its peers. The principal feature of this technique is the limitation of all its computations to only the boundaries of the domain. Although the procedure is well developed for the Laplace equation, the Poisson equation offers some computational challenges. Nevertheless, the literature provides a couple of solution methods. This paper revisits an alternate approach that has not gained much traction within the community. The purpose of this paper is to address the main bottleneck of that approach in an effort to popularize it and critically evaluate the errors introduced into the solution by that method.

Design/methodology/approach

The primary intent in the paper is to work on the particular solution of the Poisson equation by representing the source term through a Fourier series. The evaluation of the Fourier coefficients requires a rectangular domain even though the original domain can be of any arbitrary shape. The boundary conditions for the homogeneous solution gets modified by the projection of the particular solution on the original boundaries. The paper also develops a new Gauss quadrature procedure to compute the integrals appearing in the Fourier coefficients in case they cannot be analytically evaluated.

Findings

The current endeavor has developed two different representations of the source terms. A comprehensive set of benchmark exercises has successfully demonstrated the effectiveness of both the methods, especially the second one. A subsequent detailed analysis has identified the errors emanating from an inadequate number of boundary nodes and Fourier modes, a high difference in sizes between the particular solution and the original domains and the used Gauss quadrature integration procedures. Adequate mitigation procedures were successful in suppressing each of the above errors and in improving the solution accuracy to any desired level. A comparative study with the finite difference method revealed that the BIM was as accurate as the FDM but was computationally more efficient for problems of real-life scale. A later exercise minutely analyzed the heat transfer physics for a fin after validating the simulation results with the analytical solution that was separately derived. The final set of simulations demonstrated the applicability of the method to complicated geometries.

Originality/value

First, the newly developed Gauss quadrature integration procedure can efficiently compute the integrals during evaluation of the Fourier coefficients; the current literature lacks such a tool, thereby deterring researchers to adopt this category of methods. Second, to the best of the author’s knowledge, such a comprehensive error analysis of the solution method within the BIM framework for the Poisson equation does not currently exist in the literature. This particular exercise should go a long way in increasing the confidence of the research community to venture into this category of methods for the solution of the Poisson equation.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 30 July 2024

Lin Li, Jiushan Wang and Shilu Xiao

The aim of this work is to research and design an expert diagnosis system for rail vehicle driven by data mechanism models.

Abstract

Purpose

The aim of this work is to research and design an expert diagnosis system for rail vehicle driven by data mechanism models.

Design/methodology/approach

The expert diagnosis system utilizes statistical and deep learning methods to model the real-time status and historical data features of rail vehicle. Based on data mechanism models, it predicts the lifespan of key components, evaluates the health status of the vehicle and achieves intelligent monitoring and diagnosis of rail vehicle.

Findings

The actual operation effect of this system shows that it has improved the intelligent level of the rail vehicle monitoring system, which helps operators to monitor the operation of vehicle online, predict potential risks and faults of vehicle and ensure the smooth and safe operation of vehicle.

Originality/value

This system improves the efficiency of rail vehicle operation, scheduling and maintenance through intelligent monitoring and diagnosis of rail vehicle.

Article
Publication date: 17 May 2024

Sophie Michel, Frederic Messine and Jean-René Poirier

The purpose of this paper is mainly to develop the adjoint method within the method of magnetic moment (MMM) and thus, to provide an efficient new way to solve topology…

Abstract

Purpose

The purpose of this paper is mainly to develop the adjoint method within the method of magnetic moment (MMM) and thus, to provide an efficient new way to solve topology optimization problems in magnetostatic to design 3D-magnetic circuits.

Design/methodology/approach

First, the MMM is recalled and the optimization design problem is reformulated as a partial derivative equation-constrained optimization problem where the constraint is the Maxwell equation in magnetostatic. From the Karush–Khun–Tucker optimality conditions, a new problem is derived which depends on a Lagrangian parameter. This problem is called the adjoint problem and the Lagrangian parameter is called the adjoint parameter. Thus, solving the direct and the adjoint problems, the values of the objective function as well as its gradient can be efficiently obtained. To obtain a topology optimization code, a semi isotropic material with penalization (SIMP) relaxed-penalization approach associated with an optimization based on gradient descent steps has been developed and used.

Findings

In this paper, the authors provide theoretical results which make it possible to compute the gradient via the continuous adjoint of the MMMs. A code was developed and it was validated by comparing it with a finite difference method. Thus, a topology optimization code associating this adjoint based gradient computations and SIMP penalization technique was developed and its efficiency was shown by solving a 3D design problem in magnetostatic.

Research limitations/implications

This research is limited to the design of systems in magnetostatic using the linearity of the materials. The simple examples, the authors provided, are just done to validate our theoretical results and some extensions of our topology optimization code have to be done to solve more interesting design cases.

Originality/value

The problem of design is a 3D magnetic circuit. The 2D optimization problems are well known and several methods of resolution have been introduced, but rare are the problems using the adjoint method in 3D. Moreover, the association with the MMMs has never been treated yet. The authors show in this paper that this association could provide gains in CPU time.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 43 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 7 of 7