Search results

1 – 10 of 136
Article
Publication date: 25 January 2024

Chun Qiang Jia, Aofei Wang, Ling Yu and Li Zong

The rock drill’s drill tail experiences high-frequency fretting simultaneously in the rotational and axial directions. Due to the complex working characteristics and the low…

Abstract

Purpose

The rock drill’s drill tail experiences high-frequency fretting simultaneously in the rotational and axial directions. Due to the complex working characteristics and the low viscosity of the water medium, the pure water seal is susceptible to damage and failure. The purpose of this paper is to enhance the water seal’s performance.

Design/methodology/approach

The Y-shaped seal ring is modeled and simulated using orthogonal testing. Through analysis of the impact of various seal section parameters on sealing performance, the maximum contact stress and maximum Von Mises stress are selected as indicators of sealing effectiveness.

Findings

The maximum contact stress is proportional to lip thickness and chamfer length but inversely proportional to lip length. Meanwhile, the maximum Von Mises stress is directly influenced by lip depth and the included angle of the lip and drill tail but is inversely proportional to the lip thickness. The enhanced Y-shaped water seal sees reductions of 15% and 45% in maximum contact stress and maximum Von Mises stress, respectively.

Originality/value

This paper used analytical method and model that is helpful for design of the water seal’s structure in complex working characteristics and the low viscosity of the water medium.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-11-2023-0366/

Details

Industrial Lubrication and Tribology, vol. 76 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 25 December 2023

Guodong Sa, Haodong Bai, Zhenyu Liu, Xiaojian Liu and Jianrong Tan

The assembly simulation in tolerance analysis is one of the most important steps for the tolerance design of mechanical products. However, most assembly simulation methods are…

120

Abstract

Purpose

The assembly simulation in tolerance analysis is one of the most important steps for the tolerance design of mechanical products. However, most assembly simulation methods are based on the rigid body assumption, and those assembly simulation methods considering deformation have a poor efficiency. This paper aims to propose a novel efficient and precise tolerance analysis method based on stable contact to improve the efficiency and reliability of assembly deformation simulation.

Design/methodology/approach

The proposed method comprehensively considers the initial rigid assembly state, the assembly deformation and the stability examination of assembly simulation to improve the reliability of tolerance analysis results. The assembly deformation of mating surfaces was first calculated based on the boundary element method with optimal initial assembly state, then the stability of assembly simulation results was assessed by the density-based spatial clustering of applications with noise algorithm to improve the reliability of tolerance analysis. Finally, combining the small displacement torsor theory, the tolerance scheme was statistically analyzed based on sufficient samples.

Findings

A case study of a guide rail model demonstrated the efficiency and effectiveness of the proposed method.

Research limitations/implications

The present study only considered the form error when generating the skin model shape, and the waviness and the roughness of the matching surface were not considered.

Originality/value

To the best of the authors’ knowledge, the proposed method is original in the assembly simulation considering stable contact, which can effectively ensure the reliability of the assembly simulation while taking into account the computational efficiency.

Details

Robotic Intelligence and Automation, vol. 44 no. 1
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 15 January 2024

Mohammad A Gharaibeh, Markus Feisst and Jürgen Wilde

This paper aims to present two Anand’s model parameter sets for the multilayer silver–tin (AgSn) transient liquid phase (TLP) foils.

Abstract

Purpose

This paper aims to present two Anand’s model parameter sets for the multilayer silver–tin (AgSn) transient liquid phase (TLP) foils.

Design/methodology/approach

The AgSn TLP test samples are manufactured using pre-defined optimized TLP bonding process parameters. Consequently, tensile and creep tests are conducted at various loading temperatures to generate stress–strain and creep data to accurately determine the elastic properties and two sets of Anand model creep coefficients. The resultant tensile- and creep-based constitutive models are subsequently used in extensive finite element simulations to precisely survey the mechanical response of the AgSn TLP bonds in power electronics due to different thermal loads.

Findings

The response of both models is thoroughly addressed in terms of stress–strain relationships, inelastic strain energy densities and equivalent plastic strains. The simulation results revealed that the testing conditions and parameters can significantly influence the values of the fitted Anand coefficients and consequently affect the resultant FEA-computed mechanical response of the TLP bonds. Therefore, this paper suggests that extreme care has to be taken when planning experiments for the estimation of creep parameters of the AgSn TLP joints.

Originality/value

In literature, there is no constitutive modeling data on the AgSn TLP bonds.

Details

Soldering & Surface Mount Technology, vol. 36 no. 2
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 25 January 2024

Shrushti Maheshwari, Zafar Alam and Sarthak S. Singh

The purpose of this study is to experimentally investigate the large deformation compression characteristics of fused deposition modelling (FDM)-printed poly lactic acid (PLA)…

79

Abstract

Purpose

The purpose of this study is to experimentally investigate the large deformation compression characteristics of fused deposition modelling (FDM)-printed poly lactic acid (PLA), considering the combined effect of infill density and strain rate, and to develop a constitutive viscoplastic model that can incorporate the infill density to predict the experimental result.

Design/methodology/approach

The experimental approach focuses on strain rate-dependent (2.1 × 10−4, 2.1 × 10−3, and 2.1 × 10−2 s−1) compression testing for varied infill densities. Scanning electron microscopy (SEM) imaging of compressed materials is used to investigate deformation processes. A hyperelastic-viscoplastic constitutive model is constructed that can predict mechanical deformations at different strain rates and infill densities.

Findings

The yield stress of PLA increased with increase in strain rate and infill density. However, higher degree of strain-softening response was witnessed for the strain rate corresponding to 2.1 × 10−2 s−1. While filament splitting and twisting were identified as the damage mechanisms at higher strain rates, matrix crazing was observed as the primary deformation mechanism for higher infill density (95%). The developed constitutive model captured yield stress and post-yield softening behaviour of FDM build PLA samples with a high R2 value of 0.99.

Originality/value

This paper addresses the need to analyse and predict the mechanical response of FDM print polymers (PLA) undergoing extensive strain-compressive loading through a hyperelastic-viscoplastic constitutive model. This study links combined effects of the printing parameter (infill density) with the experimental parameter (strain rate).

Article
Publication date: 12 February 2024

Azmeera Sudheer Kumar, Subodh Kumar, Prashant Kumar Choudhary, Ankit Gupta and Ashish Narayan

The purpose is to explore the free vibration behaviour of elastic foundation-supported porous functionally graded nanoplates using the Rayleigh-Ritz approach. The goal of this…

55

Abstract

Purpose

The purpose is to explore the free vibration behaviour of elastic foundation-supported porous functionally graded nanoplates using the Rayleigh-Ritz approach. The goal of this study is to gain a better knowledge of the dynamic response of nanoscale structures made of functionally graded materials and porous features. The Rayleigh-Ritz approach is used in this study to generate realistic mathematical models that take elastic foundation support into account. This research can contribute to the design and optimization of advanced nanomaterials with potential applications in engineering and technology by providing insights into the influence of material composition, porosity and foundation support on the vibrational properties of nanoplates.

Design/methodology/approach

A systematic methodology is proposed to evaluate the free vibration characteristics of elastic foundation-supported porous functionally graded nanoplates using the Rayleigh-Ritz approach. The study began by developing the mathematical model, adding material properties and establishing governing equations using the Rayleigh-Ritz approach. Numerical approaches to solve the problem are used, using finite element methods. The results are compared to current solutions or experimental data to validate the process. The results are also analysed, keeping the influence of factors on vibration characteristics in mind. The findings are summarized and avenues for future research are suggested, ensuring a robust investigation within the constraints.

Findings

The Rayleigh-Ritz technique is used to investigate the free vibration properties of elastic foundation-supported porous functionally graded nanoplates. The findings show that differences in material composition, porosity and foundation support have a significant impact on the vibrational behaviour of nanoplates. The Rayleigh-Ritz approach is good at modelling and predicting these properties. Furthermore, the study emphasizes the possibility of customizing nanoplate qualities to optimize certain vibrational responses, providing useful insights for engineering applications. These findings expand understanding of dynamic behaviours in nanoscale structures, making it easier to build innovative materials with specific features for a wide range of industrial applications.

Originality/value

The novel aspect of this research is the incorporation of elastic foundation support, porous structures and functionally graded materials into the setting of nanoplate free vibrations, utilizing the Rayleigh-Ritz technique. Few research have looked into this complex combo. By tackling complicated interactions, the research pushes boundaries, providing a unique insight into the dynamic behaviour of nanoscale objects. This novel approach allows for a better understanding of the interconnected effects of material composition, porosity and foundation support on free vibrations, paving the way for the development of tailored nanomaterials with specific vibrational properties for advanced engineering and technology applications.

Details

International Journal of Structural Integrity, vol. 15 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 30 April 2024

Fatimah De’nan, Chong Shek Wai, Tong Teong Yen, Zafira Nur Ezzati Mustafa and Nor Salwani Hashim

Brief introduction on the importance and the need for plastic analysis methods were presented in the beginning section of this review. The plastic method for analysis was…

Abstract

Purpose

Brief introduction on the importance and the need for plastic analysis methods were presented in the beginning section of this review. The plastic method for analysis was considered to be the more advanced method of analysis because of its ability to represent the true behaviour of the steel structures. Then in the following section, a literature analysis has been carried out on the previous investigations done on steel plates, steel beams and steel frames by other authors. The behaviour of them under different types of loading were presented and are under the investigation of innovative new analysis methods.

Design/methodology/approach

Structure member connections also have the potential for plastic failure. In this study, the authors have highlighted a few topics to be discussed. The three topics in this study are T-end plate connections to a square hollow section, semi-rigid connections and cold-formed steel storage racks with spine bracings using speed-lock connections. Connection is one of the important parts of a structure that ensures the integrity of the structure. Finally, in this technical paper, the authors introduce some topics related to seismic action. Application of the Theory of Plastic Mechanism Control in seismic design is studied in the beginning. At the end, its in-depth application for moment resisting frames-eccentrically braced frames dual systems is investigated.

Findings

When this study involves the design of a plastic structure, the design criteria must involve the ultimate load rather than the yield stress. As the steel behaves in the plastic range, it means the capacity of the steel has reached the ultimate load. Ultimate load design and load factor design are the methods in the range of plastic analysis. After the steel capacity has reached beyond the yield stress, it fulfills the requirement in this method. The plastic analysis method offers a consistent and logical approach to structural analysis. It provides an economical solution in terms of steel weight, as the sections designed using this method are smaller compared with elastic design methods.

Originality/value

The plastic method is the primary approach used in the analysis and design of statically indeterminate frame structures.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 18 January 2024

Minglang Zhang, Xue Zuo and Yuankai Zhou

The purpose of this paper is to reveal the dynamic contact characteristics of the slip ring. Dynamic contact resistance models considering wear and self-excited were established…

Abstract

Purpose

The purpose of this paper is to reveal the dynamic contact characteristics of the slip ring. Dynamic contact resistance models considering wear and self-excited were established based on fractal theory.

Design/methodology/approach

The effects of tangential velocity, stiffness and damping coefficient on dynamic contact resistance are studied. The relationships between fractal parameters, wear time and contact parameters are revealed.

Findings

The results show that the total contact area decreases with the friction coefficient and fractal roughness under the same load. Self-excited vibration occurs at a low speed (less than 0.6 m/s). It transforms from stick-slip motion at 0.4 m/s to pure sliding at 0.5 m/s. A high stiffness makes contact resistance fluctuate violently, while increasing the damping coefficient can suppress the self-excited vibration and reduce the dynamic contact resistance. The fractal contact resistance model considering wear is established based on the fractal parameters models. The validity of the model is verified by the wear tests.

Originality/value

The results have a great significance to study the electrical contact behavior of conductive slip ring.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-09-2023-0300/

Details

Industrial Lubrication and Tribology, vol. 76 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 4 March 2024

Yuxuan Wu, Wenyuan Xu, Tianlai Yu and Yifan Wang

Polyurethane concrete (PUC), as a new type of steel bridge deck paving material, the bond-slip pattern at the interface with the steel plate is not yet clear. In this study, the…

Abstract

Purpose

Polyurethane concrete (PUC), as a new type of steel bridge deck paving material, the bond-slip pattern at the interface with the steel plate is not yet clear. In this study, the mechanical properties of the PUC and steel plate interface under the coupled action of temperature, normal force and tangential force were explored through shear tests and numerical simulations. An analytical model for bond-slip at the PUC/steel plate interface and a predictive model for the shear strength of the PUC/steel plate interface were developed.

Design/methodology/approach

The new shear test device designed in this paper overcomes the defect that the traditional oblique shear test cannot test the interface shear performance under the condition of fixed normal force. The universal testing machine (UTM) test machine was used to adjust the test temperature conditions. Combined with the results of the bond-slip test, the finite element simulation of the interface is completed by using the COHENSIVE unit to analyze the local stress distribution characteristics of the interface. The use of variance-based uncertainty analysis guaranteed the validity of the simulation.

Findings

The shear strength (τf) at the PUC-plate interface was negatively correlated with temperature while it was positively correlated with normal stress. The effect of temperature on the shear properties was more significant than that of normal stress. The slip corresponding to the maximum shear (D1) positively correlates with both temperature and normal stress. The interfacial shear ductility improves with increasing temperature.

Originality/value

Based on the PUC bond-slip measured curves, the relationship between bond stress and slip at different stages was analyzed, and the bond-slip analytical model at different stages was established; the model was defined by key parameters such as elastic ultimate shear stress τ0, peak stress τf and interface fracture energy Gf.

Details

International Journal of Structural Integrity, vol. 15 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Open Access
Article
Publication date: 25 April 2023

Rene Prieler, Simon Pletzer, Stefan Thusmer, Günther Schwabegger and Christoph Hochenauer

In fire resistance tests (FRTs) of building materials, a crucial criterion to pass the test procedure is to avoid the leakage of the hot flue gases caused by gaps and cracks…

Abstract

Purpose

In fire resistance tests (FRTs) of building materials, a crucial criterion to pass the test procedure is to avoid the leakage of the hot flue gases caused by gaps and cracks occurring due to the thermal exposure. The present study's aim is to calculate the deformation of a steel door, which is embedded within a wall made of bricks, and qualitatively determine the flue gas leakage.

Design/methodology/approach

A computational fluid dynamics/finite element method (CFD/FEM) coupling was introduced representing an intermediate approach between a one-way and a full two-way coupling methodology, leading to a simplified two-way coupling (STWC). In contrast to a full two way-coupling, the heat transfer through the steel door was simulated based on a one-way approach. Subsequently, the predicted temperatures at the door from the one-way simulation were used in the following CFD/FEM simulation, where the fluid flow inside and outside the furnace as well as the deformation of the door were calculated simultaneously.

Findings

The simulation showed large gaps and flue gas leakage above the door lock and at the upper edge of the door, which was in close accordance to the experiment. Furthermore, it was found that STWC predicted similar deformations compared to the one-way coupling.

Originality/value

Since two-way coupling approaches for fluid/structure interaction in fire research are computationally demanding, the number of studies is low. Only a few are dealing with the flue gas exit from rooms due to destruction of solid components. Thus, the present study is the first two-way approach dealing with flue gas leakage due to gap formation.

Details

Journal of Structural Fire Engineering, vol. 15 no. 1
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 7 May 2024

Mohammad A. Gharaibeh and Jürgen Wilde

The purpose of this paper is to investigate the thermomechanical response of four well-known lead-free die attach materials: sintered silver, sintered nano-copper particles…

Abstract

Purpose

The purpose of this paper is to investigate the thermomechanical response of four well-known lead-free die attach materials: sintered silver, sintered nano-copper particles, gold-tin solders and silver-tin transient liquid phase (TLP) bonds.

Design/methodology/approach

This examination is conducted through finite element analysis. The mechanical properties of all die attach systems, including elastic and Anand creep parameters, are obtained from relevant literature and incorporated into the numerical analysis. Consequently, the bond stress-strain relationships, stored inelastic strain energies and equivalent plastic strains are thoroughly examined.

Findings

The results indicate that silver-tin TLP bonds are prone to exhibiting higher inelastic strain energy densities, while sintered silver and copper interconnects tend to possess higher levels of plastic strains and deformations. This suggests a higher susceptibility to damage in these metallic die attachments. On the other hand, the more expensive gold-based solders exhibit lower inelastic strain energy densities and plastic strains, implying an improved fatigue performance compared to other bonding configurations.

Originality/value

The utilization of different metallic material systems as die attachments in power electronics necessitates a comprehensive understanding of their thermomechanical behavior. Therefore, the results of the present paper can be useful in the die attach material selection in power electronics.

Details

International Journal of Structural Integrity, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1757-9864

Keywords

1 – 10 of 136