Search results

1 – 3 of 3
Article
Publication date: 25 April 2024

Mohammed Messadi, Larbi Hadjout and Noureddine Takorabet

This paper aims to develop a new 3D analytical model in cylindrical coordinates to study radial flux eddy current couplers (RFECC) while considering the magnetic edge and 3D…

Abstract

Purpose

This paper aims to develop a new 3D analytical model in cylindrical coordinates to study radial flux eddy current couplers (RFECC) while considering the magnetic edge and 3D curvature effects, and the field reaction due to the induced currents.

Design/methodology/approach

The analytical model is developed by combining two formulations. A magnetic scalar potential formulation in the air and the magnets regions and a current density formulation in the conductive region. The magnetic field and eddy currents expressions are obtained by solving the 3D Maxwell equations in 3D cylindrical coordinates with the variable separation method. The torque expression is derived from the field solution using the Maxwell stress tensor. In addition to 3D magnetic edge effects, the proposed model takes into account the reaction field effect due to the induced currents in the conducting part. To show the accuracy of the developed 3D analytical model, its results are compared to those from the 3D finite element simulation.

Findings

The obtained results prove the accuracy of the new developed 3D analytical model. The comparison of the 3D analytical model with the 2D simulation proves the strong magnetic edge effects impact (in the axial direction) in these devices which must be considered in the modelling. The new analytical model allows the magnetic edge effects consideration without any correction factor and also presents a good compromise between precision and computation time.

Practical implications

The proposed 3D analytical model presents a considerably reduced computation time compared to 3D finite element simulation which makes it efficient as an accurate design and optimization tool for radial flux eddy current devices.

Originality/value

A new analytical model in 3D cylindrical coordinates has been developed to find the electromagnetic torque in radial flux eddy current couplers. This model considers the magnetic edge effects, the 3D curvature effects and the field reaction (without correction factors) while improving the computation time.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 14 February 2022

Aziz Zerioul, Larbi Hadjout, Youcef Ouazir, Smail Mezani and Mohammed Messadi

The purpose of this paper is to develop a new and fast three-dimensional (3D) analytical model to study a synchronous axial magnetic coupling with rectangular shaped magnets. This…

Abstract

Purpose

The purpose of this paper is to develop a new and fast three-dimensional (3D) analytical model to study a synchronous axial magnetic coupling with rectangular shaped magnets. This model takes into account edge and curvature 3D effects.

Design/methodology/approach

This paper firstly introduces a 3D analytical model for an axial coupler with sector shaped permanent magnet (PM) based on magnetic scalar potential formulation in cylindrical coordinates. The magnetic field in PM, air gap and iron disks is computed by solving Laplace’s and Poisson’s partial differential equation. This solution is then used to compute the field in rectangular shaped magnets. To do so, the adopted approach consists to divide the rectangular magnet into sector radial slices each of which the 3D model allows the determination of the magnetic field distribution. The results obtained by the proposed 3D analytical model are validated through 3D finite element computations. Furthermore, a prototype axial magnetic coupler has been constructed so air gap flux density and static torque measurements are compared to the analytical predictions.

Findings

The results obtained by the analytical model show the effectiveness of the proposed geometry transformation approach. The developed model takes into account all the 3D effects without needing any correction factor.

Research limitations/implications

The developed method provides an efficient and rapid tool for evaluating the influence of geometric and physical parameters of a synchronous magnetic coupling as part of a design optimization process.

Practical implications

The developed method provides an efficient and rapid tool for evaluating the influence of geometric and physical parameters of a synchronous magnetic coupling as part of a design optimization process.

Originality/value

A new and fast 3D analytical model, to improve the computation of the electromagnetic torque developed by a synchronous magnetic coupler with rectangular shaped magnets, has been developed. The proposed approach is really effective as it leads to consistent results when compared to 3D finite element method ones without any need for correction factor.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 41 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 9 June 2020

Mohammed Messadi, Larbi Hadjout, Youcef Ouazir, Hakim Bensaidane, Noureddine Takorabet, Thierry Lubin and Smail Mezani

This paper aims to propose a new 3D electromagnetic model to compute translational motion eddy current in the conducting plate of a novel linear permanent magnet (PM) induction…

Abstract

Purpose

This paper aims to propose a new 3D electromagnetic model to compute translational motion eddy current in the conducting plate of a novel linear permanent magnet (PM) induction heater. The movement of the plate in a DC magnetic field created by a PM inductor generates induced currents that are at the origin of a heating power by Joule effect. These topologies have strong magnetic end effects. The analytical model developed in this work takes into account the finite length extremity effects of the conducting plate and the reaction field because of induced currents.

Design/methodology/approach

The developed model is based on the combination of the sub-domain’s method and the image’s theory. First, the magnetic field expressions because of the PMs are obtained by solving the three-dimensional Maxwell equations by the method of separation of variables, using a magnetic scalar potential formulation and a magnetic field strength formulation. Then, the motional eddy currents are computed using the Ampere law, and the finite length extremity effects of the conducting plate are taken into account using the image’s method. To analyze the accuracy of the proposed model, the obtained results are compared to those obtained from 3D finite element model (FEM) and from experimental tests performed on a prototype.

Findings

The results show that the developed analytical model is very accurate, even for geometries where the edge effects are very strong. It allows directly taking into account the finite length extremity effects (the transverse edge effects) of the conducting plate and the reaction field because of induced currents without the need of any correction factor. The proposed model also presents an important reduction in computation time compared to 3D finite element simulation, allowing fast analysis of linear PM induction heater.

Practical implications

The proposed electromagnetic analytical model can be used as a quick and accurate design tool for translational motion PM induction heater devices.

Originality/value

A new 3D analytical electromagnetic model, to find the induced power in the conducting plate of a novel translational motion induction heater has been developed. The studied heating device has a finite length and a finite width, which create edge effects that are not easily considered in calculation. The novelty of the presented method is the accurate 3D analytical model, which allows finding the real power heating and real distribution of the induced currents in the conducting plate without the need to use correction factor. The proposed model also takes into account the reaction field because of induced currents. In addition, the developed model improves an important reduction in the computation time compared with 3D FEM simulation.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 39 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 3 of 3