Search results

1 – 10 of over 1000
Open Access
Article
Publication date: 2 June 2022

Hanyu Yang, Jing Zhao and Meng Wang

This study aims to propose a centralized optimal control model for automated left-turn platoon at contraflow left-turn lane (CLL) intersections.

Abstract

Purpose

This study aims to propose a centralized optimal control model for automated left-turn platoon at contraflow left-turn lane (CLL) intersections.

Design/methodology/approach

The lateral lane change control and the longitudinal acceleration in the control horizon are optimized simultaneously with the objective of maximizing traffic efficiency and smoothness. The proposed model is cast into a mixed-integer linear programming problem and then solved by the branch-and-bound technique.

Findings

The proposed model has a promising control effect under different geometric controlled conditions. Moreover, the proposed model performs robustly under various safety time headways, lengths of the CLL and green times of the main signal.

Originality/value

This study proposed a centralized optimal control model for automated left-turn platoon at CLL intersections. The lateral lane change control and the longitudinal acceleration in the control horizon are optimized simultaneously with the objective of maximizing traffic efficiency and smoothness

Open Access
Article
Publication date: 8 September 2021

Haijian Li, Junjie Zhang, Zihan Zhang and Zhufei Huang

This paper aims to use active fine lane management methods to solve the problem of congestion in a weaving area and provide theoretical and technical support for traffic control…

1046

Abstract

Purpose

This paper aims to use active fine lane management methods to solve the problem of congestion in a weaving area and provide theoretical and technical support for traffic control under the environment of intelligent connected vehicles (ICVs) in the future.

Design/methodology/approach

By analyzing the traffic capacities and traffic behaviors of domestic and foreign weaving areas and combining them with field investigation, the paper proposes the active and fine lane management methods for ICVs to optimal driving behavior in a weaving area. The VISSIM simulation of traffic flow vehicle driving behavior in weaving areas of urban expressways was performed using research data. The influence of lane-changing in advance on the weaving area was evaluated and a conflict avoidance area was established in the weaving area. The active fine lane management methods applied to a weaving area were verified for different scenarios.

Findings

The results of the study indicate that ICVs complete their lane changes before they reach a weaving area, their time in the weaving area does not exceed the specified time and the delay of vehicles that pass through the weaving area decreases.

Originality/value

Based on the vehicle group behavior, this paper conducts a simulation study on the active traffic management control-oriented to ICVs. The research results can optimize the management of lanes, improve the traffic capacity of a weaving area and mitigate traffic congestion on expressways.

Details

Journal of Intelligent and Connected Vehicles, vol. 4 no. 2
Type: Research Article
ISSN: 2399-9802

Keywords

Open Access
Article
Publication date: 5 June 2020

Zijun Jiang, Zhigang Xu, Yunchao Li, Haigen Min and Jingmei Zhou

Precise vehicle localization is a basic and critical technique for various intelligent transportation system (ITS) applications. It also needs to adapt to the complex road…

1047

Abstract

Purpose

Precise vehicle localization is a basic and critical technique for various intelligent transportation system (ITS) applications. It also needs to adapt to the complex road environments in real-time. The global positioning system and the strap-down inertial navigation system are two common techniques in the field of vehicle localization. However, the localization accuracy, reliability and real-time performance of these two techniques can not satisfy the requirement of some critical ITS applications such as collision avoiding, vision enhancement and automatic parking. Aiming at the problems above, this paper aims to propose a precise vehicle ego-localization method based on image matching.

Design/methodology/approach

This study included three steps, Step 1, extraction of feature points. After getting the image, the local features in the pavement images were extracted using an improved speeded up robust features algorithm. Step 2, eliminate mismatch points. Using a random sample consensus algorithm to eliminate mismatched points of road image and make match point pairs more robust. Step 3, matching of feature points and trajectory generation.

Findings

Through the matching and validation of the extracted local feature points, the relative translation and rotation offsets between two consecutive pavement images were calculated, eventually, the trajectory of the vehicle was generated.

Originality/value

The experimental results show that the studied algorithm has an accuracy at decimeter-level and it fully meets the demand of the lane-level positioning in some critical ITS applications.

Details

Journal of Intelligent and Connected Vehicles, vol. 3 no. 2
Type: Research Article
ISSN: 2399-9802

Keywords

Open Access
Article
Publication date: 3 December 2019

Wei Xue, Rencheng Zheng, Bo Yang, Zheng Wang, Tsutomu Kaizuka and Kimihiko Nakano

Automated driving systems (ADSs) are being developed to avoid human error and improve driving safety. However, limited focus has been given to the fallback behavior of automated…

1697

Abstract

Purpose

Automated driving systems (ADSs) are being developed to avoid human error and improve driving safety. However, limited focus has been given to the fallback behavior of automated vehicles, which act as a fail-safe mechanism to deal with safety issues resulting from sensor failure. Therefore, this study aims to establish a fallback control approach aimed at driving an automated vehicle to a safe parking lane under perceptive sensor malfunction.

Design/methodology/approach

Owing to an undetected area resulting from a front sensor malfunction, the proposed ADS first creates virtual vehicles to replace existing vehicles in the undetected area. Afterward, the virtual vehicles are assumed to perform the most hazardous driving behavior toward the host vehicle; an adaptive model predictive control algorithm is then presented to optimize the control task during the fallback procedure, avoiding potential collisions with surrounding vehicles. This fallback approach was tested in typical cases related to car-following and lane changes.

Findings

It is confirmed that the host vehicle avoid collision with the surrounding vehicles during the fallback procedure, revealing that the proposed method is effective for the test scenarios.

Originality/value

This study presents a model for the path-planning problem regarding an automated vehicle under perceptive sensor failure, and it proposes an original path-planning approach based on virtual vehicle scheme to improve the safety of an automated vehicle during a fallback procedure. This proposal gives a different view on the fallback safety problem from the normal strategy, in which the mode is switched to manual if a driver is available or the vehicle is instantly stopped.

Details

Journal of Intelligent and Connected Vehicles, vol. 2 no. 2
Type: Research Article
ISSN: 2399-9802

Keywords

Open Access
Article
Publication date: 18 March 2021

Suyi Mao, Guiming Xiao, Jaeyoung Lee, Ling Wang, Zijin Wang and Helai Huang

This study aims to investigate the safety effects of work zone advisory systems. The traditional system includes a dynamic message sign (DMS), whereas the advanced system includes…

1048

Abstract

Purpose

This study aims to investigate the safety effects of work zone advisory systems. The traditional system includes a dynamic message sign (DMS), whereas the advanced system includes an in-vehicle work zone warning application under the connected vehicle (CV) environment.

Design/methodology/approach

A comparative analysis was conducted based on the microsimulation experiments.

Findings

The results indicate that the CV-based warning system outperforms the DMS. From this study, the optimal distances of placing a DMS varies according to different traffic conditions. Nevertheless, negative influence of excessive distance DMS placed from the work zone would be more obvious when there is heavier traffic volume. Thus, it is recommended that the optimal distance DMS placed from the work zone should be shortened if there is a traffic congestion. It was also revealed that higher market penetration rate of CVs will lead to safer network under good traffic conditions.

Research limitations/implications

Because this study used only microsimulation, the results do not reflect the real-world drivers’ reactions to DMS and CV warning messages. A series of driving simulator experiments need to be conducted to capture the real driving behaviors so as to investigate the unresolved-related issues. Human machine interface needs be used to simulate the process of in-vehicle warning information delivery. The validation of the simulation model was not conducted because of the data limitation.

Practical implications

It suggests for the optimal DMS placement for improving the overall efficiency and safety under the CV environment.

Originality/value

A traffic network evaluation method considering both efficiency and safety is proposed by applying traffic simulation.

Open Access
Article
Publication date: 17 September 2020

Tao Peng, Xingliang Liu, Rui Fang, Ronghui Zhang, Yanwei Pang, Tao Wang and Yike Tong

This study aims to develop an automatic lane-change mechanism on highways for self-driving articulated trucks to improve traffic safety.

1671

Abstract

Purpose

This study aims to develop an automatic lane-change mechanism on highways for self-driving articulated trucks to improve traffic safety.

Design/methodology/approach

The authors proposed a novel safety lane-change path planning and tracking control method for articulated vehicles. A double-Gaussian distribution was introduced to deduce the lane-change trajectories of tractor and trailer coupling characteristics of intelligent vehicles and roads. With different steering and braking maneuvers, minimum safe distances were modeled and calculated. Considering safety and ergonomics, the authors invested multilevel self-driving modes that serve as the basis of decision-making for vehicle lane-change. Furthermore, a combined controller was designed by feedback linearization and single-point preview optimization to ensure the path tracking and robust stability. Specialized hardware in the loop simulation platform was built to verify the effectiveness of the designed method.

Findings

The numerical simulation results demonstrated the path-planning model feasibility and controller-combined decision mechanism effectiveness to self-driving trucks. The proposed trajectory model could provide safety lane-change path planning, and the designed controller could ensure good tracking and robust stability for the closed-loop nonlinear system.

Originality/value

This is a fundamental research of intelligent local path planning and automatic control for articulated vehicles. There are two main contributions: the first is a more quantifiable trajectory model for self-driving articulated vehicles, which provides the opportunity to adapt vehicle and scene changes. The second involves designing a feedback linearization controller, combined with a multi-objective decision-making mode, to improve the comprehensive performance of intelligent vehicles. This study provides a valuable reference to develop advanced driving assistant system and intelligent control systems for self-driving articulated vehicles.

Details

Journal of Intelligent and Connected Vehicles, vol. 3 no. 2
Type: Research Article
ISSN: 2399-9802

Keywords

Open Access
Article
Publication date: 11 March 2020

Kun Wang, Weihua Zhang, Zhongxiang Feng and Cheng Wang

The purpose of this paper is to perform fine classification of road traffic visibility based on the characteristics of driving behavior under different visibility conditions.

1643

Abstract

Purpose

The purpose of this paper is to perform fine classification of road traffic visibility based on the characteristics of driving behavior under different visibility conditions.

Design/methodology/approach

A driving simulator experiment was conducted to collect data of speed and lane position. ANOVA was used to explore the difference in driving behavior under different visibility conditions.

Findings

The results show that only average speed is significantly different under different visibility conditions. With the visibility reducing, the average vehicle speed decreases. The road visibility conditions in a straight segment can be divided into five levels: less than 20, 20-30, 35-60, 60-140 and more than 140 m. The road visibility conditions in a curve segment can be also divided into four levels: less than 20, 20-30, 35-60 and more than 60 m.

Originality/value

A fine classification of road traffic visibility has been performed, and these classifications help to establish more accurate control measures to ensure road traffic safety under low-visibility conditions.

Details

Journal of Intelligent and Connected Vehicles, vol. 3 no. 1
Type: Research Article
ISSN: 2399-9802

Keywords

Open Access
Article
Publication date: 4 December 2018

Daxin Tian, Weiqiang Gong, Wenhao Liu, Xuting Duan, Yukai Zhu, Chao Liu and Xin Li

This paper aims to introduce vehicular network platform, routing and broadcasting methods and vehicular positioning enhancement technology, which are three aspects of the…

1718

Abstract

Purpose

This paper aims to introduce vehicular network platform, routing and broadcasting methods and vehicular positioning enhancement technology, which are three aspects of the applications of intelligent computing in vehicular networks. From this paper, the role of intelligent algorithm in the field of transportation and the vehicular networks can be understood.

Design/methodology/approach

In this paper, the authors introduce three different methods in three layers of vehicle networking, which are data cleaning based on machine learning, routing algorithm based on epidemic model and cooperative localization algorithm based on the connect vehicles.

Findings

In Section 2, a novel classification-based framework is proposed to efficiently assess the data quality and screen out the abnormal vehicles in database. In Section 3, the authors can find when traffic conditions varied from free flow to congestion, the number of message copies increased dramatically and the reachability also improved. The error of vehicle positioning is reduced by 35.39% based on the CV-IMM-EKF in Section 4. Finally, it can be concluded that the intelligent computing in the vehicle network system is effective, and it will improve the development of the car networking system.

Originality/value

This paper reviews the research of intelligent algorithms in three related areas of vehicle networking. In the field of vehicle networking, these research results are conducive to promoting data processing and algorithm optimization, and it may lay the foundation for the new methods.

Details

Journal of Intelligent and Connected Vehicles, vol. 1 no. 2
Type: Research Article
ISSN: 2399-9802

Keywords

Open Access
Article
Publication date: 12 July 2022

Zheng Xu, Yihai Fang, Nan Zheng and Hai L. Vu

With the aid of naturalistic simulations, this paper aims to investigate human behavior during manual and autonomous driving modes in complex scenarios.

Abstract

Purpose

With the aid of naturalistic simulations, this paper aims to investigate human behavior during manual and autonomous driving modes in complex scenarios.

Design/methodology/approach

The simulation environment is established by integrating virtual reality interface with a micro-simulation model. In the simulation, the vehicle autonomy is developed by a framework that integrates artificial neural networks and genetic algorithms. Human-subject experiments are carried, and participants are asked to virtually sit in the developed autonomous vehicle (AV) that allows for both human driving and autopilot functions within a mixed traffic environment.

Findings

Not surprisingly, the inconsistency is identified between two driving modes, in which the AV’s driving maneuver causes the cognitive bias and makes participants feel unsafe. Even though only a shallow portion of the cases that the AV ended up with an accident during the testing stage, participants still frequently intervened during the AV operation. On a similar note, even though the statistical results reflect that the AV drives under perceived high-risk conditions, rarely an actual crash can happen. This suggests that the classic safety surrogate measurement, e.g. time-to-collision, may require adjustment for the mixed traffic flow.

Research limitations/implications

Understanding the behavior of AVs and the behavioral difference between AVs and human drivers are important, where the developed platform is only the first effort to identify the critical scenarios where the AVs might fail to react.

Practical implications

This paper attempts to fill the existing research gap in preparing close-to-reality tools for AV experience and further understanding human behavior during high-level autonomous driving.

Social implications

This work aims to systematically analyze the inconsistency in driving patterns between manual and autopilot modes in various driving scenarios (i.e. multiple scenes and various traffic conditions) to facilitate user acceptance of AV technology.

Originality/value

A close-to-reality tool for AV experience and AV-related behavioral study. A systematic analysis in relation to the inconsistency in driving patterns between manual and autonomous driving. A foundation for identifying the critical scenarios where the AVs might fail to react.

Details

Journal of Intelligent and Connected Vehicles, vol. 5 no. 3
Type: Research Article
ISSN: 2399-9802

Keywords

Open Access
Article
Publication date: 1 October 2018

Xunjia Zheng, Bin Huang, Daiheng Ni and Qing Xu

The purpose of this paper is to accurately capture the risks which are caused by each road user in time.

2809

Abstract

Purpose

The purpose of this paper is to accurately capture the risks which are caused by each road user in time.

Design/methodology/approach

The authors proposed a novel risk assessment approach based on the multi-sensor fusion algorithm in the real traffic environment. Firstly, they proposed a novel detection-level fusion approach for multi-object perception in dense traffic environment based on evidence theory. This approach integrated four states of track life into a generic fusion framework to improve the performance of multi-object perception. The information of object type, position and velocity was accurately obtained. Then, they conducted several experiments in real dense traffic environment on highways and urban roads, which enabled them to propose a novel road traffic risk modeling approach based on the dynamic analysis of vehicles in a variety of driving scenarios. By analyzing the generation process of traffic risks between vehicles and the road environment, the equivalent forces of vehicle–vehicle and vehicle–road were presented and theoretically calculated. The prediction steering angle and trajectory were considered in the determination of traffic risk influence area.

Findings

The results of multi-object perception in the experiments showed that the proposed fusion approach achieved low false and missing tracking, and the road traffic risk was described as a field of equivalent force. The results extend the understanding of the traffic risk, which supported that the traffic risk from the front and back of the vehicle can be perceived in advance.

Originality/value

This approach integrated four states of track life into a generic fusion framework to improve the performance of multi-object perception. The information of object type, position and velocity was used to reduce erroneous data association between tracks and detections. Then, the authors conducted several experiments in real dense traffic environment on highways and urban roads, which enabled them to propose a novel road traffic risk modeling approach based on the dynamic analysis of vehicles in a variety of driving scenarios. By analyzing the generation process of traffic risks between vehicles and the road environment, the equivalent forces of vehicle–vehicle and vehicle–road were presented and theoretically calculated.

Details

Journal of Intelligent and Connected Vehicles, vol. 1 no. 2
Type: Research Article
ISSN: 2399-9802

Keywords

1 – 10 of over 1000