Search results

1 – 10 of 271
Open Access
Article
Publication date: 2 June 2022

Hanyu Yang, Jing Zhao and Meng Wang

This study aims to propose a centralized optimal control model for automated left-turn platoon at contraflow left-turn lane (CLL) intersections.

Abstract

Purpose

This study aims to propose a centralized optimal control model for automated left-turn platoon at contraflow left-turn lane (CLL) intersections.

Design/methodology/approach

The lateral lane change control and the longitudinal acceleration in the control horizon are optimized simultaneously with the objective of maximizing traffic efficiency and smoothness. The proposed model is cast into a mixed-integer linear programming problem and then solved by the branch-and-bound technique.

Findings

The proposed model has a promising control effect under different geometric controlled conditions. Moreover, the proposed model performs robustly under various safety time headways, lengths of the CLL and green times of the main signal.

Originality/value

This study proposed a centralized optimal control model for automated left-turn platoon at CLL intersections. The lateral lane change control and the longitudinal acceleration in the control horizon are optimized simultaneously with the objective of maximizing traffic efficiency and smoothness

Book part
Publication date: 12 September 1997

Carlos F. Daganzo

Abstract

Details

Fundamentals of Transportation and Traffic Operations
Type: Book
ISBN: 978-0-08-042785-0

Abstract

Details

Fundamentals of Transportation and Traffic Operations
Type: Book
ISBN: 978-0-08-042785-0

Open Access
Article
Publication date: 4 December 2018

Daxin Tian, Weiqiang Gong, Wenhao Liu, Xuting Duan, Yukai Zhu, Chao Liu and Xin Li

This paper aims to introduce vehicular network platform, routing and broadcasting methods and vehicular positioning enhancement technology, which are three aspects of the…

1713

Abstract

Purpose

This paper aims to introduce vehicular network platform, routing and broadcasting methods and vehicular positioning enhancement technology, which are three aspects of the applications of intelligent computing in vehicular networks. From this paper, the role of intelligent algorithm in the field of transportation and the vehicular networks can be understood.

Design/methodology/approach

In this paper, the authors introduce three different methods in three layers of vehicle networking, which are data cleaning based on machine learning, routing algorithm based on epidemic model and cooperative localization algorithm based on the connect vehicles.

Findings

In Section 2, a novel classification-based framework is proposed to efficiently assess the data quality and screen out the abnormal vehicles in database. In Section 3, the authors can find when traffic conditions varied from free flow to congestion, the number of message copies increased dramatically and the reachability also improved. The error of vehicle positioning is reduced by 35.39% based on the CV-IMM-EKF in Section 4. Finally, it can be concluded that the intelligent computing in the vehicle network system is effective, and it will improve the development of the car networking system.

Originality/value

This paper reviews the research of intelligent algorithms in three related areas of vehicle networking. In the field of vehicle networking, these research results are conducive to promoting data processing and algorithm optimization, and it may lay the foundation for the new methods.

Details

Journal of Intelligent and Connected Vehicles, vol. 1 no. 2
Type: Research Article
ISSN: 2399-9802

Keywords

Abstract

Details

Fundamentals of Transportation and Traffic Operations
Type: Book
ISBN: 978-0-08-042785-0

Article
Publication date: 10 May 2021

Pallavi Pradeep Khobragade and Ajay Vikram Ahirwar

The purpose of this study is to monitor suspended particulate matter (SPM), PM2.5 and source apportionment study for the identification of possible sources during the year…

Abstract

Purpose

The purpose of this study is to monitor suspended particulate matter (SPM), PM2.5 and source apportionment study for the identification of possible sources during the year 2018–2019 at Raipur, India.

Design/methodology/approach

Source apportionment study was performed using a multivariate receptor model, positive matrix factorization (PMFv5.0) with a view to identify the various possible sources of particulate matter in the area. Back-trajectory analysis was also performed using NOAA-HYSPLIT model to understand the origin and trans-boundary movement of air mass over the sampling location.

Findings

Daily average SPM and PM2.5 aerosols mass concentration was found to be 377.19 ± 157.24 µg/m³ and 126.39 ± 37.77 µg/m³ respectively. SPM and PM2.5 mass concentrations showed distinct seasonal cycle; SPM – (Winter ; 377.19 ±157.25 µg/m?) > (Summer; 283.57 ±93.18 µg/m?) > (Monsoon; 33.20 ±16.32 µg/m?) and PM2.5 – (Winter; 126.39±37.77 µg/m³) > (Summer; 75.92±12.28 µg/m³). Source apportionment model (PMF) have been applied and identified five major sources contributing the pollution; steel production and industry (68%), vehicular and re-suspended road dust (10.1%), heavy oil combustion (10.1%), tire wear and brake wear/abrasion (8%) and crustal/Earth crust (3.7%). Industrial activities have been identified as major contributing factor for air quality degradation in the region.

Practical implications

Chemical characterization of aerosols and identification of possible sources will be helpful in abatement of pollution and framing mitigating strategies. It will also help in standardization of global climate model.

Originality/value

The findings provide valuable results to be considered for controlling air pollution in the region.

Details

World Journal of Engineering, vol. 19 no. 4
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 16 January 2023

Faisal Lone, Harsh Kumar Verma and Krishna Pal Sharma

The purpose of this study is to extensively explore the vehicular network paradigm, challenges faced by them and provide a reasonable solution for securing these vulnerable…

Abstract

Purpose

The purpose of this study is to extensively explore the vehicular network paradigm, challenges faced by them and provide a reasonable solution for securing these vulnerable networks. Vehicle-to-everything (V2X) communication has brought the long-anticipated goal of safe, convenient and sustainable transportation closer to reality. The connected vehicle (CV) paradigm is critical to the intelligent transportation systems vision. It imagines a society free of a troublesome transportation system burdened by gridlock, fatal accidents and a polluted environment. The authors cannot overstate the importance of CVs in solving long-standing mobility issues and making travel safer and more convenient. It is high time to explore vehicular networks in detail to suggest solutions to the challenges encountered by these highly dynamic networks.

Design/methodology/approach

This paper compiles research on various V2X topics, from a comprehensive overview of V2X networks to their unique characteristics and challenges. In doing so, the authors identify multiple issues encountered by V2X communication networks due to their open communication nature and high mobility, especially from a security perspective. Thus, this paper proposes a trust-based model to secure vehicular networks. The proposed approach uses the communicating nodes’ behavior to establish trustworthy relationships. The proposed model only allows trusted nodes to communicate among themselves while isolating malicious nodes to achieve secure communication.

Findings

Despite the benefits offered by V2X networks, they have associated challenges. As the number of CVs on the roads increase, so does the attack surface. Connected cars provide numerous safety-critical applications that, if compromised, can result in fatal consequences. While cryptographic mechanisms effectively prevent external attacks, various studies propose trust-based models to complement cryptographic solutions for dealing with internal attacks. While numerous trust-based models have been proposed, there is room for improvement in malicious node detection and complexity. Optimizing the number of nodes considered in trust calculation can reduce the complexity of state-of-the-art solutions. The theoretical analysis of the proposed model exhibits an improvement in trust calculation, better malicious node detection and fewer computations.

Originality/value

The proposed model is the first to add another dimension to trust calculation by incorporating opinions about recommender nodes. The added dimension improves the trust calculation resulting in better performance in thwarting attacks and enhancing security while also reducing the trust calculation complexity.

Details

International Journal of Pervasive Computing and Communications, vol. 20 no. 1
Type: Research Article
ISSN: 1742-7371

Keywords

Abstract

Details

Fundamentals of Transportation and Traffic Operations
Type: Book
ISBN: 978-0-08-042785-0

Abstract

Details

Fundamentals of Transportation and Traffic Operations
Type: Book
ISBN: 978-0-08-042785-0

Article
Publication date: 21 March 2019

Prabhakaran N. and Sudhakar M.S.

The purpose of this paper is to propose a novel curvilinear path estimation model employing multivariate adaptive regression splines (MARS) for mid vehicle collision avoidance…

Abstract

Purpose

The purpose of this paper is to propose a novel curvilinear path estimation model employing multivariate adaptive regression splines (MARS) for mid vehicle collision avoidance. The two-phase path estimation scheme initially uses the offset (position) value of the front and the mid (host) vehicle to build the crisp model. The resulting crisp model is MARS regressed to deliver a closely aligned actual model in the second phase. This arrangement significantly narrows the gap between the estimated and the true path analyzed using the mean square error (MSE) for different offsets on Next Generation Simulation Interstate 80 (NGSIM I-80) data set. The presented model also covers parallel parking by encompassing the reverse motion of the host vehicle in the path estimation, thereby, making it amicable for real-road scenarios.

Design/methodology/approach

The two-phase path estimation scheme initially uses the offset (position) value of the front and the mid (host) vehicle to build the crisp model. The resulting crisp model is MARS regressed to deliver a closely aligned actual model in the second phase.

Findings

This arrangement significantly narrows the gap between the estimated and the true path studied using MSE for different offsets on real (Next Generation Simulation-NGSIM) data. The presented model also covers parallel parking by encompassing the reverse motion of the host vehicle in the path estimation. Thereby, making it amicable for real-road scenarios.

Originality/value

This paper builds a mathematical model that considers the offset and host (mid) vehicles for appropriate path fitting.

Details

International Journal of Intelligent Unmanned Systems, vol. 7 no. 2
Type: Research Article
ISSN: 2049-6427

Keywords

1 – 10 of 271