Search results

1 – 2 of 2
Open Access
Book part
Publication date: 4 May 2018

Mohammad Irfan Fahmi, Hidayatullah, JhonsonEfendi Hutagalung and Sajadin Sembiring

Research to find new energy source is still an intensive work by researchers in this field. One of the energy sources with no negative impact to environment is solar energy. Solar…

Abstract

Research to find new energy source is still an intensive work by researchers in this field. One of the energy sources with no negative impact to environment is solar energy. Solar cell is used to convert solar energy to electrical energy. The electrically powered solar cell in direct current (DC) power is not suitable for our daily office equipment since they need the alternating current (AC) power. This research has succeeded in realizing a solar cell automation tool based on Arduino Uno with input from solar energy, from which output AC voltage can be used for the needs of household appliances and office equipments. Output power of this tool is approximately 700 W, which can turn on the lights, charge the hand phones, laptops, and so forth.

Article
Publication date: 8 July 2021

Ramesh P. and Vinodh S.

Material extrusion (MEX) is a class of additive manufacturing (AM) process based on MEX principle. In the viewpoint of Industry 4.0 and sustainable manufacturing, AM technologies…

Abstract

Purpose

Material extrusion (MEX) is a class of additive manufacturing (AM) process based on MEX principle. In the viewpoint of Industry 4.0 and sustainable manufacturing, AM technologies are gaining importance than conventional manufacturing route (subtractive manufacturing). Because of the ease of use and lesser operation skills, MEX had wide popularity in industry for product and prototype development. This study aims to analyze energy consumption of MEX-based AM process and its influencing factors.

Design/methodology/approach

A group of factors were identified pertaining to MEX-based AM process. In this viewpoint, this study presents the configuration of a structural model using interpretive structural modeling (ISM) to depict dominant factors in MEX-based AM process. A total of 18 influencing factors are identified and ranked using ISM methodology for MEX process. The Impact Matrix Cross-reference Multiplication Applied to a Classification analysis was done to categorize influencing factors into four groups for MEX-based AM process.

Findings

The derivation of structural model would enable AM practitioners to systematically analyze the factors and to derive key factors which enable comprehensive energy modeling and energy assessment studies. Also, it facilitates the development of energy efficient AM system.

Originality/value

The development of structural model for analysis of factors influencing energy consumption of MEX-based AM is the original contribution of the authors.

1 – 2 of 2