Search results

1 – 10 of over 47000
Article
Publication date: 25 August 2021

Noor Adwa Sulaiman and Fatimah Mat Yasin

This study aims to examine the structural power wielded by the audit committee (AC) and the various bases of its power, whilst also exploring the behavioural tactics used by the AC

Abstract

Purpose

This study aims to examine the structural power wielded by the audit committee (AC) and the various bases of its power, whilst also exploring the behavioural tactics used by the AC to leverage its power in the oversight of the external audit.

Design/methodology/approach

Empirical evidence was drawn from semi-structured interviews with external auditors and AC members in Malaysia.

Findings

The AC’s structural power is derived from its formal and network position in the organisation. The AC possesses three forms of organisational-based power (legitimate, coercive and informational) resultant from its formal position, and these combine with the AC’s personal power (will and expert). The AC uses its personal power base to develop trusting relationships and to promote the exchange of information with other key corporate governance actors in the network position. Furthermore, the AC applies at least four behavioural tactics (assertiveness, ingratiation, rationality and coalition formation) to exercise its bases of power.

Originality/value

This study attempts to describe the AC’s structural sources of power, its organisational and personal power bases, and the behavioural tactics it uses when exerting its power.

Details

Meditari Accountancy Research, vol. 30 no. 6
Type: Research Article
ISSN: 2049-372X

Keywords

Article
Publication date: 18 September 2007

Stuart Turley and Mahbub Zaman

This paper seeks to investigate the conditions and processes affecting the operation and potential effectiveness of audit committees (ACs), with particular focus on the…

10239

Abstract

Purpose

This paper seeks to investigate the conditions and processes affecting the operation and potential effectiveness of audit committees (ACs), with particular focus on the interaction between the AC, individuals from financial reporting and internal audit functions and the external auditors.

Design/methodology/approach

A case study approach is employed, based on direct engagement with participants in AC activities, including the AC chair, external auditors, internal auditors, and senior management.

Findings

The authors find that informal networks between AC participants condition the impact of the AC and that the most significant effects of the AC on governance outcomes occur outside the formal structures and processes. An AC has pervasive behavioural effects within the organization and may be used as a threat, an ally and an arbiter in bringing solutions to issues and conflicts. ACs are used in organizational politics, communication processes and power plays and also affect interpretations of events and cultural values.

Research limitations/implications

Further research on AC and governance processes is needed to develop better understanding of effectiveness. Longitudinal studies, focusing on the organizational and institutional context of AC operations, can examine how historical events in an organization and significant changes in the regulatory environment affect current structures and processes.

Originality/value

The case analysis highlights a number of significant factors which are not fully recognised either in theorizing the governance role of ACs or in the development of policy and regulations concerning ACs but which impinge on their governance contribution. They include the importance of informal processes around the AC; its influence on power relations between organizational participants; the relevance of the historical development of governance in an organization; and the possibility that the AC's impact on governance may be greatest in non‐routine situations.

Details

Accounting, Auditing & Accountability Journal, vol. 20 no. 5
Type: Research Article
ISSN: 0951-3574

Keywords

Article
Publication date: 30 September 2014

Michael J. Armstrong and Christine A.H. Ross

This article is aims to inform aircraft propulsion system designers of the implications which fundamental power distribution design assumptions have on the effectiveness and…

Abstract

Purpose

This article is aims to inform aircraft propulsion system designers of the implications which fundamental power distribution design assumptions have on the effectiveness and viability of turboelectric distributed propulsion (TeDP) systems. Improvements and challenges associated with selecting alternating or direct current for normal- and superconducting distribution systems are presented. Additionally, for superconducting systems, the benefits of bi-polar DC distribution are discussed, as well as the implications of operating voltage on the mass and efficiency of TeDP grid components.

Design/methodology/approach

The approach to this paper selects several high-level fundamental configuration decisions, which must be made, and it qualitatively discusses potential implications of these decisions.

Findings

Near term TeDP architectures which employ conventionally conducting systems may benefit from alternating current (AC) distribution concepts to eliminate the mass and losses associated with power conversion. Farther term TeDP concepts which employ superconducting technologies may benefit from direct current (DC) distribution to reduce the cryocooling requirements stemming from AC conduction losses. Selecting the operating voltage for superconducting concepts requires a divergence from the present day criteria employed with terrestrial superconducting transmission systems.

Practical implications

The criteria presented in the paper will assist in the early conceptual architecting of TeDP systems.

Originality/value

The governing principles behind the configuration of multi-MW airborne electrical microgrid systems are presently immature. This paper represents a unique look and the motivating principles behind fundamental electrical configuration decisions in the context of TeDP.

Details

Aircraft Engineering and Aerospace Technology: An International Journal, vol. 86 no. 6
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 15 November 2021

Sunilkumar Agrawal and Prasanta Kundu

This paper aims to propose a novel methodology for optimal voltage source converter (VSC) station installation in hybrid alternating current (AC)/direct current (DC) transmission…

Abstract

Purpose

This paper aims to propose a novel methodology for optimal voltage source converter (VSC) station installation in hybrid alternating current (AC)/direct current (DC) transmission networks.

Design/methodology/approach

In this analysis, a unified power flow model has been developed for the optimal power flow (OPF) problem for VSC-based high voltage direct current (VSC-HVDC) transmission network and solved using a particle swarm optimization (PSO) algorithm. The impact of the HVDC converter under abnormal conditions considering N-1 line outage contingency is analyzed against the congestion relief of the overall transmission network. The average loadability index is used as a severity indicator and minimized along with overall transmission line losses by replacing each AC line with an HVDC line independently.

Findings

The developed unified OPF (UOPF) model converged successfully with (PSO) algorithm. The OPF problem has satisfied the defined operational constraints of the power system, and comparative results are obtained for objective function with different HVDC test configurations represented in the paper. In addition, the impact of VSC converter location is determined on objective function value.

Originality/value

A novel methodology has been developed for the optimal installation of the converter station for the point-to-point configuration of HVDC transmission. The developed unified OPF model and methodology for selecting the AC bus for converter installation has effectively reduced congestion in transmission lines under single line outage contingency.

Article
Publication date: 1 February 1989

Bennett J. Price

Uninterruptible Power Supply (UPS) systems are typically designed to provide power to computers for five to thirty minutes after all utility company power has failed. In addition…

Abstract

Uninterruptible Power Supply (UPS) systems are typically designed to provide power to computers for five to thirty minutes after all utility company power has failed. In addition to providing blackout and brownout protection, many UPS systems also protect against spikes, surges, sags, and noise, and some also offer many of the features found in power distribution units (PDUs). The major components or subsystems of a typical UPS system are detailed, and a sample bid specification is appended. Three sidebars discuss UPSs and air conditioning, the maintenance bypass switch (MBS), and literature for further reading.

Details

Library Hi Tech, vol. 7 no. 2
Type: Research Article
ISSN: 0737-8831

Article
Publication date: 10 September 2018

Yuvaraja T. and K. Ramya

The purpose of studying the low voltage direct current (DC) microgrid, which uses computerised control system techniques, an orderly coordination control stratagem considering…

Abstract

Purpose

The purpose of studying the low voltage direct current (DC) microgrid, which uses computerised control system techniques, an orderly coordination control stratagem considering optimisation of a hybrid energy storage system (HESS) was projected in this paper.

Design/methodology/approach

The projected control stratagem was divided into three levels: topmost power dispatch level, transitional bus voltage regulation level and bottommost converter control level.

Findings

At the topmost power dispatch level, the cost of system stability was introduced, which is related with state of charge and discharging power of HESS.

Originality/value

Furthermore, the cost of system stability and HESS depreciation was compared with commercial price, and HESS switches its operating mode to discharge more at higher price or charge more at lower price to ensure the DC microgrid in economic operation. At the transitional bus voltage regulation level, DC bus gesturing is used as a control signal to achieve an autonomous decentralised operation of DC microgrid. The Matlab/Simulink simulation inveterate that the economical and autonomous decentralised operation can be achieved through the control stratagem.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 37 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 February 2000

Yaw A. Debrah and Ian G. Smith

Presents over sixty abstracts summarising the 1999 Employment Research Unit annual conference held at the University of Cardiff. Explores the multiple impacts of globalization on…

11528

Abstract

Presents over sixty abstracts summarising the 1999 Employment Research Unit annual conference held at the University of Cardiff. Explores the multiple impacts of globalization on work and employment in contemporary organizations. Covers the human resource management implications of organizational responses to globalization. Examines the theoretical, methodological, empirical and comparative issues pertaining to competitiveness and the management of human resources, the impact of organisational strategies and international production on the workplace, the organization of labour markets, human resource development, cultural change in organisations, trade union responses, and trans‐national corporations. Cites many case studies showing how globalization has brought a lot of opportunities together with much change both to the employee and the employer. Considers the threats to existing cultures, structures and systems.

Details

Management Research News, vol. 23 no. 2/3/4
Type: Research Article
ISSN: 0140-9174

Keywords

Article
Publication date: 10 February 2023

Kanungo Barada Mohanty and Pavankumar Daramukkala

The purpose of this study is to provide the enhancement of power quality of a high power-rated voltage source inverter driven induction motor with a three-phase, three-level…

Abstract

Purpose

The purpose of this study is to provide the enhancement of power quality of a high power-rated voltage source inverter driven induction motor with a three-phase, three-level neutral point clamped converter placed at the front end, while a passive power filter is connected in shunt with it. The improvement in power quality can be achieved by reducing the total harmonic distortion in source current. The controllers were designed for the linearization of the high-power induction motor drive. A control method is presented for the regulation of the common DC-link voltage.

Design/methodology/approach

The induction motor is modeled using its dynamic equations, and a decoupling controller is designed to linearize the nonlinear dynamics of the drive through feedback. The common DC-link voltage of the proposed front-end connected converter is monitored and controlled through a control method which feeds the pulse width modulated inverter that drives the induction motor. A passive power filter is designed to meet the reactive power requirement of the system in addition to improve the power quality.

Findings

Simulations were carried out for the proposed topology of the drive mechanism, and the outcomes were analyzed by a comparative analysis of the drive system both in the presence of the passive filter as well as in the absence of the filter. The total harmonic distortion is found to be reduced enough to meet the standards with the designed filter, and the reactive power is also compensated considerably. The input power factor at the supply side is maintained almost to unity, and the DC-link voltage of the proposed circuit topology is maintained at the desired level. The overall performance of the drive system was found to be useful and economical.

Originality/value

A new topology of a front-end connected three-level neutral point clamped converter to a high power-rated induction motor drive is proposed. The drive is fed by a pulse width modulated inverter with a common DC-link with the front end connected converter. A passive filter is designed with respect to the reactive power requirement of the system and connected in shunt to the converter at the supply side. Control schemes are designed and used for the drive system and also for the regulation of the common DC-link voltage of the proposed front end connected converter.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 3 January 2017

Kosei Shinoda, Xavier Guillaud, Seddik Bacha, Abdelkrim Benchaib and Bruno Francois

Self-commuted voltage source converter (VSC) can significantly extend the flexibility and operability of an HVDC system and be used to implement the concept of multi-terminal HVDC…

Abstract

Purpose

Self-commuted voltage source converter (VSC) can significantly extend the flexibility and operability of an HVDC system and be used to implement the concept of multi-terminal HVDC (MTDC) grid. To take full advantage of MTDC systems, its overall behaviour must be characterized in quasi static and dynamic states. Based on the numerous literatures, a dedicated two-level VSC model and its local controllers and DC grid voltage regulators are developed for this purpose. Furthermore, the requirement of the system to guarantee all the physical constrains must be well assessed and concrete demonstrations must be provided by numerical simulations.

Design/methodology/approach

First, a two-level VSC model and its local controllers and DC grid voltage regulators are developed. Then, DC cable models are investigated and their characteristics are assessed in the frequency domain. Those developed models are combined to form a three-terminal HVDC grid system on Matlab/Simulink platform. To analyze the stability of this electrical system, the dynamics of the system against variations of power dispatch are observed.

Findings

To analyze the stability of this electrical system, the dynamics of the system against variations of power dispatch are observed. The differences in the DC grid voltage dynamics and the power flow of the converter stations coming from the embedded primary controls are analysed, and the technical requirements for both cases are assessed.

Originality/value

In this paper, the dynamic stability of an MTDC system has been analysed and assessed through an adequate simulation model, including its control scheme and the cable models. The interest of the improved PI model for cables is highlighted.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 36 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 5 August 2022

Dharma Raj T., Kumar C., Subramaniam G., Dhanesh Raj T. and Jasper J.

Renewable energy sources such as solar photovoltaic (PV) and wind are ubiquitous because of their lower environmental impact. Output from solar PV and wind turbines is unstable;…

Abstract

Purpose

Renewable energy sources such as solar photovoltaic (PV) and wind are ubiquitous because of their lower environmental impact. Output from solar PV and wind turbines is unstable; hence, this article aims to propose an effective controller to extract maximum available power.

Design/methodology/approach

By focusing on the varying nature of solar irradiance and wind speed, the paper presents the maximum power point tracking (MPPT) technique for renewable energy sources, and power regulation is made by the novel inverter design. Moreover, a DC–DC boost converter is adopted with solar PV, and a doubly fed induction generator is connected with the wind turbine. The proposed MPPT technique is used with the help of a rain optimization algorithm (ROA) based on bi-directional long short-term memory (Bi-LSTM) (ROA_Bi-LSTM). In addition, the sinusoidal pulse width modulation inverter is used for DC–AC power conversion.

Findings

The proposed MPPT technique has jointly tracked the maximum power from solar PV and wind under varying climatic conditions. The power flow to the transmission line is stabilized to protect the load devices from unregulated frequency and voltage deviations. The power to the smart grid is regulated by three-level sinusoidal pulse width modulation inverter.

Originality/value

The methodology and concept of the paper are taken by the author on their own. They have not taken a duplicate copy of any other research article.

1 – 10 of over 47000