Search results

1 – 10 of 20
Article
Publication date: 19 December 2023

Jinchao Huang

Single-shot multi-category clothing recognition and retrieval play a crucial role in online searching and offline settlement scenarios. Existing clothing recognition methods based…

Abstract

Purpose

Single-shot multi-category clothing recognition and retrieval play a crucial role in online searching and offline settlement scenarios. Existing clothing recognition methods based on RGBD clothing images often suffer from high-dimensional feature representations, leading to compromised performance and efficiency.

Design/methodology/approach

To address this issue, this paper proposes a novel method called Manifold Embedded Discriminative Feature Selection (MEDFS) to select global and local features, thereby reducing the dimensionality of the feature representation and improving performance. Specifically, by combining three global features and three local features, a low-dimensional embedding is constructed to capture the correlations between features and categories. The MEDFS method designs an optimization framework utilizing manifold mapping and sparse regularization to achieve feature selection. The optimization objective is solved using an alternating iterative strategy, ensuring convergence.

Findings

Empirical studies conducted on a publicly available RGBD clothing image dataset demonstrate that the proposed MEDFS method achieves highly competitive clothing classification performance while maintaining efficiency in clothing recognition and retrieval.

Originality/value

This paper introduces a novel approach for multi-category clothing recognition and retrieval, incorporating the selection of global and local features. The proposed method holds potential for practical applications in real-world clothing scenarios.

Details

International Journal of Intelligent Computing and Cybernetics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 3 July 2023

Sandra Khalil and Diana Dagher

The paper explores the inflationary consequences of the Lebanese economic and financial crises on Lebanese society. The study investigates the distribution of inflationary harm…

Abstract

Purpose

The paper explores the inflationary consequences of the Lebanese economic and financial crises on Lebanese society. The study investigates the distribution of inflationary harm across various demographic characteristics, including age, marital status, educational level, employment type, region of residence, income range and type. It also identifies the different coping mechanisms adopted by the Lebanese people to survive during the inflationary period.

Design/methodology/approach

The study surveys 168 Lebanese citizens to determine which groups of people are most affected by inflation, its impact on their quality of life and the different coping mechanisms the citizens employ to endure the period of growing prices.

Findings

The results show that some groups of Lebanese citizens are more influenced than others by rising prices. The categories of people who suffer the most from inflation are the elderly, the widowed, those characterized by low educational and low-income levels, the unemployed, the retired and public sector employees, as well as homemakers.

Originality/value

This study provides policymakers with substantial information regarding the economic and social well-being of Lebanese citizens by highlighting the categories of people in need for special financial and social support. The findings can guide targeted policy interventions to support vulnerable populations. The study can also inform future research on the impact of the crisis and the effectiveness of policies.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/IJSE-11-2022-0736

Details

International Journal of Social Economics, vol. 51 no. 1
Type: Research Article
ISSN: 0306-8293

Keywords

Article
Publication date: 17 February 2022

Prajakta Thakare and Ravi Sankar V.

Agriculture is the backbone of a country, contributing more than half of the sector of economy throughout the world. The need for precision agriculture is essential in evaluating…

Abstract

Purpose

Agriculture is the backbone of a country, contributing more than half of the sector of economy throughout the world. The need for precision agriculture is essential in evaluating the conditions of the crops with the aim of determining the proper selection of pesticides. The conventional method of pest detection fails to be stable and provides limited accuracy in the prediction. This paper aims to propose an automatic pest detection module for the accurate detection of pests using the hybrid optimization controlled deep learning model.

Design/methodology/approach

The paper proposes an advanced pest detection strategy based on deep learning strategy through wireless sensor network (WSN) in the agricultural fields. Initially, the WSN consisting of number of nodes and a sink are clustered as number of clusters. Each cluster comprises a cluster head (CH) and a number of nodes, where the CH involves in the transfer of data to the sink node of the WSN and the CH is selected using the fractional ant bee colony optimization (FABC) algorithm. The routing process is executed using the protruder optimization algorithm that helps in the transfer of image data to the sink node through the optimal CH. The sink node acts as the data aggregator and the collection of image data thus obtained acts as the input database to be processed to find the type of pest in the agricultural field. The image data is pre-processed to remove the artifacts present in the image and the pre-processed image is then subjected to feature extraction process, through which the significant local directional pattern, local binary pattern, local optimal-oriented pattern (LOOP) and local ternary pattern (LTP) features are extracted. The extracted features are then fed to the deep-convolutional neural network (CNN) in such a way to detect the type of pests in the agricultural field. The weights of the deep-CNN are tuned optimally using the proposed MFGHO optimization algorithm that is developed with the combined characteristics of navigating search agents and the swarming search agents.

Findings

The analysis using insect identification from habitus image Database based on the performance metrics, such as accuracy, specificity and sensitivity, reveals the effectiveness of the proposed MFGHO-based deep-CNN in detecting the pests in crops. The analysis proves that the proposed classifier using the FABC+protruder optimization-based data aggregation strategy obtains an accuracy of 94.3482%, sensitivity of 93.3247% and the specificity of 94.5263%, which is high as compared to the existing methods.

Originality/value

The proposed MFGHO optimization-based deep-CNN is used for the detection of pest in the crop fields to ensure the better selection of proper cost-effective pesticides for the crop fields in such a way to increase the production. The proposed MFGHO algorithm is developed with the integrated characteristic features of navigating search agents and the swarming search agents in such a way to facilitate the optimal tuning of the hyperparameters in the deep-CNN classifier for the detection of pests in the crop fields.

Details

Journal of Engineering, Design and Technology , vol. 22 no. 3
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 17 June 2021

Ambica Ghai, Pradeep Kumar and Samrat Gupta

Web users rely heavily on online content make decisions without assessing the veracity of the content. The online content comprising text, image, video or audio may be tampered…

1177

Abstract

Purpose

Web users rely heavily on online content make decisions without assessing the veracity of the content. The online content comprising text, image, video or audio may be tampered with to influence public opinion. Since the consumers of online information (misinformation) tend to trust the content when the image(s) supplement the text, image manipulation software is increasingly being used to forge the images. To address the crucial problem of image manipulation, this study focusses on developing a deep-learning-based image forgery detection framework.

Design/methodology/approach

The proposed deep-learning-based framework aims to detect images forged using copy-move and splicing techniques. The image transformation technique aids the identification of relevant features for the network to train effectively. After that, the pre-trained customized convolutional neural network is used to train on the public benchmark datasets, and the performance is evaluated on the test dataset using various parameters.

Findings

The comparative analysis of image transformation techniques and experiments conducted on benchmark datasets from a variety of socio-cultural domains establishes the effectiveness and viability of the proposed framework. These findings affirm the potential applicability of proposed framework in real-time image forgery detection.

Research limitations/implications

This study bears implications for several important aspects of research on image forgery detection. First this research adds to recent discussion on feature extraction and learning for image forgery detection. While prior research on image forgery detection, hand-crafted the features, the proposed solution contributes to stream of literature that automatically learns the features and classify the images. Second, this research contributes to ongoing effort in curtailing the spread of misinformation using images. The extant literature on spread of misinformation has prominently focussed on textual data shared over social media platforms. The study addresses the call for greater emphasis on the development of robust image transformation techniques.

Practical implications

This study carries important practical implications for various domains such as forensic sciences, media and journalism where image data is increasingly being used to make inferences. The integration of image forgery detection tools can be helpful in determining the credibility of the article or post before it is shared over the Internet. The content shared over the Internet by the users has become an important component of news reporting. The framework proposed in this paper can be further extended and trained on more annotated real-world data so as to function as a tool for fact-checkers.

Social implications

In the current scenario wherein most of the image forgery detection studies attempt to assess whether the image is real or forged in an offline mode, it is crucial to identify any trending or potential forged image as early as possible. By learning from historical data, the proposed framework can aid in early prediction of forged images to detect the newly emerging forged images even before they occur. In summary, the proposed framework has a potential to mitigate physical spreading and psychological impact of forged images on social media.

Originality/value

This study focusses on copy-move and splicing techniques while integrating transfer learning concepts to classify forged images with high accuracy. The synergistic use of hitherto little explored image transformation techniques and customized convolutional neural network helps design a robust image forgery detection framework. Experiments and findings establish that the proposed framework accurately classifies forged images, thus mitigating the negative socio-cultural spread of misinformation.

Details

Information Technology & People, vol. 37 no. 2
Type: Research Article
ISSN: 0959-3845

Keywords

Article
Publication date: 26 January 2022

Rajashekhar U., Neelappa and Harish H.M.

The natural control, feedback, stimuli and protection of these subsequent principles founded this project. Via properly conducted experiments, a multilayer computer rehabilitation…

Abstract

Purpose

The natural control, feedback, stimuli and protection of these subsequent principles founded this project. Via properly conducted experiments, a multilayer computer rehabilitation system was created that integrated natural interaction assisted by electroencephalogram (EEG), which enabled the movements in the virtual environment and real wheelchair. For blind wheelchair operator patients, this paper involved of expounding the proper methodology. For educating the value of life and independence of blind wheelchair users, outcomes have proven that virtual reality (VR) with EEG signals has that potential.

Design/methodology/approach

Individuals face numerous challenges with many disorders, particularly when multiple dysfunctions are diagnosed and especially for visually effected wheelchair users. This scenario, in reality, creates in a degree of incapacity on the part of the wheelchair user in terms of performing simple activities. Based on their specific medical needs, confined patients are treated in a modified method. Independent navigation is secured for individuals with vision and motor disabilities. There is a necessity for communication which justifies the use of VR in this navigation situation. For the effective integration of locomotion besides, it must be under natural guidance. EEG, which uses random brain impulses, has made significant progress in the field of health. The custom of an automated audio announcement system modified to have the help of VR and EEG for the training of locomotion and individualized interaction of wheelchair users with visual disability is demonstrated in this study through an experiment. Enabling the patients who were otherwise deemed incapacitated to participate in social activities, as the aim was to have efficient connections.

Findings

To protect their life straightaway and to report all these disputes, the military system should have high speed, more precise portable prototype device for nursing the soldier health, recognition of solider location and report about health sharing system to the concerned system. Field programmable gate array (FPGA)-based soldier’s health observing and position gratitude system is proposed in this paper. Reliant on heart rate which is centered on EEG signals, the soldier’s health is observed on systematic bases. By emerging Verilog hardware description language (HDL) programming language and executing on Artix-7 development FPGA board of part name XC7ACSG100t the whole work is approved in a Vivado Design Suite. Classification of different abnormalities and cloud storage of EEG along with the type of abnormalities, artifact elimination, abnormalities identification based on feature extraction, exist in the segment of suggested architecture. Irregularity circumstances are noticed through developed prototype system and alert the physically challenged (PHC) individual via an audio announcement. An actual method for eradicating motion artifacts from EEG signals that have anomalies in the PHC person’s brain has been established, and the established system is a portable device that can deliver differences in brain signal variation intensity. Primarily the EEG signals can be taken and the undesirable artifact can be detached, later structures can be mined by discrete wavelet transform these are the two stages through which artifact deletion can be completed. The anomalies in signal can be noticed and recognized by using machine learning algorithms known as multirate support vector machine classifiers when the features have been extracted using a combination of hidden Markov model (HMM) and Gaussian mixture model (GMM). Intended for capable declaration about action taken by a blind person, these result signals are protected in storage devices and conveyed to the controller. Pretending daily motion schedules allows the pretentious EEG signals to be caught. Aimed at the validation of planned system, the database can be used and continued with numerous recorded signals of EEG. The projected strategy executes better in terms of re-storing theta, delta, alpha and beta complexes of the original EEG with less alteration and a higher signal to noise ratio (SNR) value of the EEG signal, which illustrates in the quantitative analysis. The projected method used Verilog HDL and MATLAB software for both formation and authorization of results to yield improved results. Since from the achieved results, it is initiated that 32% enhancement in SNR, 14% in mean squared error (MSE) and 65% enhancement in recognition of anomalies, hence design is effectively certified and proved for standard EEG signals data sets on FPGA.

Originality/value

The proposed system can be used in military applications as it is high speed and excellent precise in terms of identification of abnormality, the developed system is portable and very precise. FPGA-based soldier’s health observing and position gratitude system is proposed in this paper. Reliant on heart rate which is centered on EEG signals the soldier health is observed in systematic bases. The proposed system is developed using Verilog HDL programming language and executing on Artix-7 development FPGA board of part name XC7ACSG100t and synthesised using in Vivado Design Suite software tool.

Details

International Journal of Pervasive Computing and Communications, vol. 19 no. 3
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 25 October 2023

Wen Pin Gooi, Pei Ling Leow, Jaysuman Pusppanathan, Xian Feng Hor and Shahrulnizahani Mohammad Din

As one of the tomographic imaging techniques, electrical capacitance tomography (ECT) is widely used in many industrial applications. While most ECT sensors have electrodes placed…

Abstract

Purpose

As one of the tomographic imaging techniques, electrical capacitance tomography (ECT) is widely used in many industrial applications. While most ECT sensors have electrodes placed around a cylindrical chamber, the planar ECT sensor has been investigated for depth and defect detection. However, the planar ECT sensor has limited height and depth sensing capability due to its single-sided assessment with the use of only a single-plane design. The purpose of this paper is to investigate a dual-plane miniature planar 3D ECT sensor design using the 3 × 3 matrix electrode array.

Design/methodology/approach

The sensitivity map of dual-plane miniature planar 3D ECT sensor was analysed using 3D visualisation, the singular value decomposition and the axial resolution analysis. Then, the sensor was fabricated for performance analysis based on 3D imaging experiments.

Findings

The sensitivity map analysis showed that the dual-plane miniature planar 3D ECT sensor has enhanced the height sensing capability, and it is less ill-posed in 3D image reconstruction. The dual-plane miniature planar 3D ECT sensor showed a 28% improvement in reconstructed 3D image quality as compared to the single-plane sensor set-up.

Originality/value

The 3 × 3 matrix electrode array has been proposed to use only the necessary electrode pair combinations for image reconstruction. Besides, the increase in number of electrodes from the dual-plane sensor setup improved the height reconstruction of the test sample.

Details

Sensor Review, vol. 43 no. 5/6
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 3 July 2023

Zahra Mirzaei-Azandaryani, Yousef Javadzadeh, Elnaz Shaseb and Mojgan Mirghafourvand

Because of the importance of having enough sleep in life and health, this study aims to determine the effect of vitamin D supplementation on sleep quality and pregnancy symptoms…

Abstract

Purpose

Because of the importance of having enough sleep in life and health, this study aims to determine the effect of vitamin D supplementation on sleep quality and pregnancy symptoms (primary outcomes) and side effects (secondary outcome).

Design/methodology/approach

In this triple-blind randomized controlled clinical trial, 88 pregnant women with gestational age of 8–10 weeks and serum vitamin D concentration less than 30 ng/ml were allocated into vitamin D (n = 44) and control (n = 44) groups by blocked randomization method. The vitamin D group received a 4,000 IU vitamin D pill, and the control group received a placebo pill daily for 18 weeks. Independent t-, Mann–Whitney U and ANCOVA tests were used to analyze the data.

Findings

The post-intervention mean (SD: standard deviation) of total sleep quality score in the vitamin D and placebo group were 1.94 (2.1) and 4.62 (1.71), respectively. According to the Mann–Whitney U test, this difference between the two groups was statistically significant (p < 0.001). The mean (SD) of pregnancy symptoms in the vitamin D and placebo groups was 23.95 (16.07) and 26.62 (13.84), respectively, and there was no significant difference between the two groups based on ANCOVA test (p = 0.56). Considerable side effects were not observed in any groups.

Originality/value

This study was conducted due to the contradictory results of the effect of vitamin D on sleep quality and the high prevalence of sleep disorders and pregnancy symptoms.

Details

Nutrition & Food Science , vol. 53 no. 8
Type: Research Article
ISSN: 0034-6659

Keywords

Article
Publication date: 2 April 2024

R.S. Vignesh and M. Monica Subashini

An abundance of techniques has been presented so forth for waste classification but, they deliver inefficient results with low accuracy. Their achievement on various repositories…

Abstract

Purpose

An abundance of techniques has been presented so forth for waste classification but, they deliver inefficient results with low accuracy. Their achievement on various repositories is different and also, there is insufficiency of high-scale databases for training. The purpose of the study is to provide high security.

Design/methodology/approach

In this research, optimization-assisted federated learning (FL) is introduced for thermoplastic waste segregation and classification. The deep learning (DL) network trained by Archimedes Henry gas solubility optimization (AHGSO) is used for the classification of plastic and resin types. The deep quantum neural networks (DQNN) is used for first-level classification and the deep max-out network (DMN) is employed for second-level classification. This developed AHGSO is obtained by blending the features of Archimedes optimization algorithm (AOA) and Henry gas solubility optimization (HGSO). The entities included in this approach are nodes and servers. Local training is carried out depending on local data and updations to the server are performed. Then, the model is aggregated at the server. Thereafter, each node downloads the global model and the update training is executed depending on the downloaded global and the local model till it achieves the satisfied condition. Finally, local update and aggregation at the server is altered based on the average method. The Data tag suite (DATS_2022) dataset is used for multilevel thermoplastic waste segregation and classification.

Findings

By using the DQNN in first-level classification the designed optimization-assisted FL has gained an accuracy of 0.930, mean average precision (MAP) of 0.933, false positive rate (FPR) of 0.213, loss function of 0.211, mean square error (MSE) of 0.328 and root mean square error (RMSE) of 0.572. In the second level classification, by using DMN the accuracy, MAP, FPR, loss function, MSE and RMSE are 0.932, 0.935, 0.093, 0.068, 0.303 and 0.551.

Originality/value

The multilevel thermoplastic waste segregation and classification using the proposed model is accurate and improves the effectiveness of the classification.

Article
Publication date: 30 April 2024

Shiqing Wu, Jiahai Wang, Haibin Jiang and Weiye Xue

The purpose of this study is to explore a new assembly process planning and execution mode to realize rapid response, reduce the labor intensity of assembly workers and improve…

Abstract

Purpose

The purpose of this study is to explore a new assembly process planning and execution mode to realize rapid response, reduce the labor intensity of assembly workers and improve the assembly efficiency and quality.

Design/methodology/approach

Based on the related concepts of digital twin, this paper studies the product assembly planning in digital space, the process execution in physical space and the interaction between digital space and physical space. The assembly process planning is simulated and verified in the digital space to generate three-dimensional visual assembly process specification documents, the implementation of the assembly process specification documents in the physical space is monitored and feed back to revise the assembly process and improve the assembly quality.

Findings

Digital twin technology enhances the quality and efficiency of assembly process planning and execution system.

Originality/value

It provides a new perspective for assembly process planning and execution, the architecture, connections and data acquisition approaches of the digital twin-driven framework are proposed in this paper, which is of important theoretical values. What is more, a smart assembly workbench is developed, the specific image classification algorithms are presented in detail too, which is of some industrial application values.

Details

Robotic Intelligence and Automation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 22 August 2023

Umar Saba Dangana and Namnso Bassey Udoekanem

The rising concern for the accuracy of residential valuations in Nigeria has created the need for key stakeholders in the residential property markets in the study areas to know…

Abstract

Purpose

The rising concern for the accuracy of residential valuations in Nigeria has created the need for key stakeholders in the residential property markets in the study areas to know the level of accuracy of valuations in order to make rational residential property transactions, amongst other purposes.

Design/methodology/approach

A blend of descriptive and causal designs was adopted for the study. Data were collected via structured questionnaire administered to 179 estate surveying and valuation (ESV) firms in the study areas using census sampling technique. Analytical techniques such as median percentage error (PE), mean and relative importance index (RII) analysis were employed in the analysis of data collected for the study.

Findings

The study found that valuation accuracy is greater in the residential property market in Abuja than in Minna, with inappropriate valuation methodology as the most significant cause of valuation inaccuracy.

Practical implications

The practical implication of this study is that a reliable databank should be established for the property market to provide credible transaction data for valuers to conduct accurate valuations in these cities. Strict enforcement of national and international valuation standards by the regulatory authorities as well as retraining of valuers on appropriate application of valuation approaches and methods are the recommended corrective measures.

Originality/value

No study has comparatively examined the accuracy of valuations in two extremely different residential property markets in the country using actual valuation and transaction prices.

Details

Property Management, vol. 42 no. 2
Type: Research Article
ISSN: 0263-7472

Keywords

1 – 10 of 20