Search results

1 – 10 of 51
Article
Publication date: 5 July 2021

Alireza Shariatifard, Dariuosh Kamali, Saeid Hejri and Emad Hasani Malekshah

This study aims to employ a modern numerical approach for conducting the simulations, which uses the smoothed-profile lattice Boltzmann method. Two separate distribution functions…

Abstract

Purpose

This study aims to employ a modern numerical approach for conducting the simulations, which uses the smoothed-profile lattice Boltzmann method. Two separate distribution functions for flow and temperature fields are used to solve the Navier–Stokes equations in the most efficient manner. In addition, the KooKleinstreuerLi model is used to calculate the dynamic viscosity and thermal conductivity in the desired volume fractions, and the effect of Brownian motion is taken into consideration.

Design/methodology/approach

Nowadays, because of enhanced global price of oil and critical issue of global warming, a significant demand for using renewable energy exists. The solar energy is one of the most popular forms of renewable energy. The solar collector can be used to collect and trap the energy received from the sun. The present work focuses on introducing and investigating a parabolic-trough solar collector.

Findings

To analyze all hydrodynamic and thermal views of the solar collector, the structure of nanofluid stream, distribution of temperature, local dissipations because of flow and heat transfer, volumetric entropy production, Bejan number vs Rayleigh number and volume fraction are presented. Also, three different configurations for profile of solar receiver are designed and studied.

Originality/value

The originality of the present work is in using a modern numerical approach for a well-known application. Also, the effect of Brownian motion is taken into account which significantly enhances the accuracy.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 16 July 2019

Qingang Xiong, Arash Khosravi, Narjes Nabipour, Mohammad Hossein Doranehgard, Aida Sabaghmoghadam and David Ross

This paper aims to numerically investigate the nanofluid flow, heat transfer and entropy generation during natural convection in an annulus.

Abstract

Purpose

This paper aims to numerically investigate the nanofluid flow, heat transfer and entropy generation during natural convection in an annulus.

Design/methodology/approach

The lattice Boltzmann method is used to simulate the velocity and temperature fields. Furthermore, some special modifications are applied to make the lattice Boltzmann method capable for simulation in the curved boundary conditions. The annulus is filled with CuO-water nanofluid. The dynamic viscosity of nanofluid is estimated using KLL (Koo-Kleinstreuer-Li) model, and the nanoparticle shape effect is taken account in calculating the thermal conductivity. On the other hand, the local/volumetric entropy generation is used to show the irreversibility under influence of different parameters.

Findings

The effect of considered governing parameters including Rayleigh number (103<Ra < 106); nanoparticle concentration (0<<0.04) and configuration of annulus on the flow structure; temperature field; and local and total entropy generation and heat transfer rate are presented.

Originality/value

The originality of this work is using of lattice Boltzmann method is simulation of natural convection in a curved configuration and using of KooKleinstreuerLi correlation for simulation of nanofluid.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 13 June 2019

Yongsheng Rao, Zehui Shao, Alireza Rahimi, Abbas Kasaeipoor and Emad Hasani Malekshah

A comprehensive study on the fluid flow and heat transfer in a nanofluid channel is carried out. The configuration of the channel is as like as quarter channel. The channel is…

99

Abstract

Purpose

A comprehensive study on the fluid flow and heat transfer in a nanofluid channel is carried out. The configuration of the channel is as like as quarter channel. The channel is filled with CuO–water nanofluid.

Design/methodology/approach

The KooKleinstreuerLi model is used to estimate the dynamic viscosity and consider the Brownian motion. On the other hand, the influence of nanoparticles’ shapes on the heat transfer rate is considered in the simulations. The channel is included with the injection pipes which are modeled as active bodies with constant temperature in the 2D simulations.

Findings

The Rayleigh number, nanoparticle concentration and the thermal arrangements of internal pipes are the governing parameters. The hydrothermal aspects of natural convection are investigation using different approaches such as average Nusselt number, total entropy generation, Bejan number, streamlines, temperature fields, local heat transfer irreversibility, local fluid friction irreversibility and heatlines.

Originality/value

The originality of this work is investigation of fluid flow, heat transfer, entropy generation and heatline visualization within a nanofluid-filled channel using a finite volume method.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 13 November 2018

M. Sheikholeslami, Hakan F. Öztop, Nidal Abu-Hamdeh and Zhixiong Li

The purpose of this paper is to research on CuO-water nanofluid Non-Darcy flow because of magnetic field. Porous cavity has circular heat source and filled with nanofluid. Lattice…

Abstract

Purpose

The purpose of this paper is to research on CuO-water nanofluid Non-Darcy flow because of magnetic field. Porous cavity has circular heat source and filled with nanofluid. Lattice Boltzmann Method (LBM) has been used to simulate this problem.

Design/methodology/approach

In this research, LBM has been applied as mesoscopic approach to simulate water-based nanofluid free convection. KooKleinstreuerLi model is used to consider Brownian motion impact on nanofluid properties. Impacts of Rayleigh number, Darcy number, nanofluid volume fraction and Hartmann number on heat transfer treatment are illustrated.

Findings

It is found that temperature gradient decreases with rise of while it enhances with augment of Ha. Darcy number can enhance the convective flow.

Originality/value

The originality of this work is to analyze the to investigate magnetic field impact on water based CuO-H2O nanofluid natural convection inside a porous cavity with elliptic heat source.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 28 October 2019

HamidReza KhakRah, Payam Hooshmand, David Ross and Meysam Jamshidian

The purpose of this paper is to investigate the compact finite-difference lattice Boltzmann method is used to simulate the free convection within a cavity.

Abstract

Purpose

The purpose of this paper is to investigate the compact finite-difference lattice Boltzmann method is used to simulate the free convection within a cavity.

Design/methodology/approach

The finite-difference discretization method enables the numerical simulations to be run when there are non-uniform and curvilinear grids with a finer near-wall grid resolution. Furthermore, the high-order method is applied in the numerical approach, which makes it possible to go with relatively coarse mesh in respect to simulations, which used classical lattice Boltzmann method. The configuration of the cavity is set to sine-walled square. In addition, the cavity is filled with Al2O3-water nanofluid, and the KooKleinstreuerLi model is used to estimate the properties of nanofluid.

Findings

The nanoparticle (Al2O3) concentration in the base fluid (water) is considered in a range of 0-0.04. The nanofluid flow and heat transfer are investigated in laminar regime with Rayleigh number in the range of 103-106. The second law analysis is used to study the effects of different governing parameters on the local and volumetric entropy generation. The Rayleigh number, configuration of the cavity and nanoparticle concentration are considered as the governing parameters. The results are mainly focused on the flow structure, temperature field, local and volumetric entropy generation and heat transfer performance.

Originality/value

The originality of this study is using of a modern numerical method supported by an accurate prediction for nanofluid properties to simulate the flow and heat transfer during natural convection in a cavity.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 3 October 2023

Emad Hasani Malekshah and Lioua Kolsi

The purpose of this study is the hydrothermal analysis of the natural convection phenomenon within the heat exchanger containing nanofluids using the lattice Boltzmann method…

171

Abstract

Purpose

The purpose of this study is the hydrothermal analysis of the natural convection phenomenon within the heat exchanger containing nanofluids using the lattice Boltzmann method (LBM).

Design/methodology/approach

The thermal conductivity as well as dynamic viscosity of the CuO–water nanofluid is estimated using the Koo-Kleinstreuer-Li model. The LBM has been used with unique modifications to make it flexible with the curved boundaries. The local as well as total entropy generation assessment, local Nusselt variation, as well as heatline visualization are used.

Findings

The solid volume percentage of the CuO–water nanofluid, a range of Rayleigh numbers (Ra) and thermal settings of internal operational fins and bodies are all factors that have been thoroughly researched to determine their effects on entropy production, heat transfer efficiency and nanofluid flow.

Originality/value

The originality of this work is using a novel numerical method (i.e. curved boundary LBM) as well as the local/volumetric second law analysis for the application of heat exchanger hydrothermal analysis.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 14 December 2018

Alireza Rahimi, Pouria Azarikhah, Abbas Kasaeipoor, Emad Hasani Malekshah and Lioua Kolsi

This paper aims to investigate the natural convection fluid flow and heat transfer in a finned/multi-pipe cavity.

Abstract

Purpose

This paper aims to investigate the natural convection fluid flow and heat transfer in a finned/multi-pipe cavity.

Design/methodology/approach

The cavity is filled with the CuO-water nanofluid. The KooKleinstreuerLi model is used to estimate the dynamic viscosity and consider Brownian motion. On the other hand, the effect of the shapes of nanoparticles on the thermal conductivity and related heat transfer rate is presented.

Findings

In the present investigation, the governing parameters are Rayleigh number, CuO nanoparticle concentration in pure water and the thermal arrangements of internal active fins and solid bodies. Impacts of these parameters on the nanofluid flow, heat transfer rate, total/local entropy generation and heatlines are presented. It is concluded that adding nanoparticles to the pure fluid has a significant positive influence on the heat transfer performance. In addition, the average Nusselt number and total entropy generation have direct a relationship with the Rayleigh number. The thermal arrangement of the internal bodies and fins is a good controlling tool to determine the desired magnitude of heat transfer rate.

Originality/value

The originality of this paper is to use the lattice Boltzmann method in simulating the nanofluid flow and heat transfer within a cavity included with internal active bodies and fins.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 2 June 2020

Amin Kardgar

The purpose of this paper is to investigate conjugate heat transfer of natural convection and entropy generation of nanofluid in the presence of external magnetic field via…

Abstract

Purpose

The purpose of this paper is to investigate conjugate heat transfer of natural convection and entropy generation of nanofluid in the presence of external magnetic field via numerical approach in an inclined square cavity enclosure.

Design/methodology/approach

Control volume finite volume method with collocated arrangement of grids was used for discretization of continuity, momentum, solid and fluid energy equations. Rhie and Chow interpolation technique was applied to avoid checkerboard problem in pressure field and the well-established SIMPLE algorithm was followed to deal with the pressure and velocity coupling. The cavity is filled with water and nanoparticles of the aluminum oxide (Al2O3). This study has been conducted for the certain pertinent parameters of the volume fraction of nanoparticle (φ = 0–0.08), the angle of inclination (ϴ = 0°–330°), the Ra number (Ra = 103–108), the solid to fluid conductivity ratio (ksf = 1–400), the Ha number (Ha = 0–80) and the wall thickness ratio (δ/L = 0–0.3).

Findings

The results indicate that averaged Nu number increases by approximately 9% by increasing volume fraction from 0.0 to 0.08. Nu increases with an increasing inclination angle to 40° and decreases abruptly in 90° because of the formation of two weaker vorticity with opposite circulation pattern intensifying the density of isotherm curves in a vertical direction. Nu increases sharply with increasing Ra more than 105. Nu also augments almost 67% by increasing ksf = 1 to ksf = 50 and remains constant by increasing ksf more than 50. Nu number reduction is almost 72% with a variation of wall thickness ratio from d/L = 0 to 0.3. Entropy generation because of fluid flow, magnetic field and heat transfer reduces linearly almost 30%, 19% and 16% by increasing volume fraction, respectively. With increasing ksf, entropy generation because of fluid flow, magnetic field and heat transfer increases asymptotically, but Bejan number decreases.

Originality/value

A brief review of conducted research studies in nanofluid flow and heat transfer reveals that the effect of wall thermal inertia was not investigated in MHD natural convection of nanofluids in an inclined enclosure. The aim of the present study is to analyze conjugate heat transfer in an inclined cavity filled with water and Al2O3.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 11 January 2022

Muhammad Aqeel Ashraf, Zhenling Liu, Emad Hasani Malekshah, Lioua Kolsi and Ahmed Kadhim Hussein

The purpose of the present work is to investigate the hydrodynamic and thermal performance of a thermal storage based on the numerical and experimental approaches using the…

Abstract

Purpose

The purpose of the present work is to investigate the hydrodynamic and thermal performance of a thermal storage based on the numerical and experimental approaches using the lattice Boltzmann method and the experimental observation on the thermo-physical properties of the operating fluid.

Design/methodology/approach

For this purpose, the Al2O3 nanoparticle is added to the lubricant with four nanoparticle concentrations, including 0.1, 0.2, 0.4 and 0.6Vol.%. After preparing the nanolubricant samples, the thermal conductivity and dynamic viscosity of nanolubricant are measured using thermal analyzer and viscometer, respectively. Finally, the extracted data are used in the numerical simulation using provided correlations. In the numerical process, the lattice Boltzmann equations based on Bhatnagar–Gross Krook model are used. Also, some modifications are applied to treat with the complex boundary conditions. In addition, the second law analysis is used based on the local and total views.

Findings

Different types of results are reported, including the flow structure, temperature distribution, contours of local entropy generation, value of average Nusselt number, value of entropy generation and value of Bejan number.

Originality/value

The originality of this work is combining a modern numerical methodology with experimental data to simulate the convective flow for an industrial application.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 7 August 2017

M. Sheikholeslami

The effect of a magnetic field on nanofluid natural convection in a porous annulus is simulated. Control volume-based finite element method (CVFEM) is applied to find the…

Abstract

Purpose

The effect of a magnetic field on nanofluid natural convection in a porous annulus is simulated. Control volume-based finite element method (CVFEM) is applied to find the influence of tilted angle and Darcy, Rayleigh and Hartmann numbers on nanofluid hydrothermal behavior. Vorticity stream function formulation is taken into account. Also, Brownian motion effect on nanofluid thermal conductivity is considered. Results reveal that Hartmann number and tilted angle make changes in nanofluid flow style. Nusselt number enhances with augment of Darcy number and buoyancy forces but reduces with rise of tilted angle and Hartmann number.

Design/methodology/approach

The influence of adding CuO nanoparticles in water on the velocity and temperature distribution in an inclined half-annulus was studied considering constant heat flux. CVFEM is applied to the simulation procedure.

Findings

Influences of CuO volume fraction, inclination angle and Rayleigh number on hydrothermal manners are presented.

Originality/value

Results indicate that inclination angle makes changes in flow style. The temperature gradient enhances with rise of buoyancy forces, whereas it reduces with augment of inclination angle.

Details

Engineering Computations, vol. 34 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of 51