Search results

1 – 10 of over 17000
Content available
Article
Publication date: 23 May 2023

Russell Nelson, Russell King, Brandon M. McConnell and Kristin Thoney-Barletta

The purpose of this study was to create an air movement operations planning model to rapidly generate air mission request (AMR) assignment and routing courses of action (COA) in…

Abstract

Purpose

The purpose of this study was to create an air movement operations planning model to rapidly generate air mission request (AMR) assignment and routing courses of action (COA) in order to minimize unsupported AMRs, aircraft utilization and routing cost.

Design/methodology/approach

In this paper, the US Army Aviation air movement operations planning problem is modeled as a mixed integer linear program (MILP) as an extension of the dial-a-ride problem (DARP). The paper also introduces a heuristic as an extension of a single-vehicle DARP demand insertion algorithm to generate feasible solutions in a tactically useful time period.

Findings

The MILP model generates optimal solutions for small problems (low numbers of AMRs and small helicopter fleets). The heuristic generates near-optimal feasible solutions for problems of various sizes (up to 100 AMRs and 10 helicopter team fleet size) in near real time.

Research limitations/implications

Due to the inability of the MILP to produce optimal solutions for mid- and large-sized problems, this research is limited in commenting on the heuristic solution quality beyond the numerical experimentation. Additionally, the authors make several simplifying assumptions to generalize the average performance and capabilities of aircraft throughout a flight.

Originality/value

This research is the first to solve the US Army Aviation air movement operations planning problem via a single formulation that incorporates multiple refuel nodes, minimization of unsupported demand by priority level, demand time windows, aircraft team utilization penalties, aircraft team time windows and maximum duration and passenger ride time limits.

Details

Journal of Defense Analytics and Logistics, vol. 7 no. 1
Type: Research Article
ISSN: 2399-6439

Keywords

Content available
Article
Publication date: 26 October 2021

Dave C. Longhorn, Joshua R. Muckensturm and Shelby V. Baybordi

This paper recommends new criteria for selecting seaports of embarkation during military deployments. Most importantly, this research compares the current port selection…

Abstract

Purpose

This paper recommends new criteria for selecting seaports of embarkation during military deployments. Most importantly, this research compares the current port selection criterion, which is to select the seaport with the shortest inland transport time from the deploying installation, to the proposed port selection criteria, which are to select the seaport based on the shortest combined inland and oceanic transit time to the destination theater.

Design/methodology/approach

The authors construct an original integer program to select seaports that minimize the expected delivery timeline for a set of notional, but realistic, deployment requirements. The integer program is solved considering the current as well as the proposed port selection criteria. The solutions are then compared using paired-samples t-tests to assess the statistical significance of the port selection criteria.

Findings

This work suggests that the current port selection criterion results in a 10–13% slower delivery of deploying forces as compared to the proposed port selection criteria.

Research limitations/implications

This work assumes deterministic inland transit times, oceanic transit times, and seaport processing rates. Operational fluctuations in transit times and processing rates are not expected to change the findings from this research.

Practical implications

This research provides evidence that the current port selection criterion for selecting seaports for military units deploying from the Continental United States is suboptimal. More importantly, logistics planners could use these recommended port selection criteria to reduce the expected delivery timelines during military deployments.

Originality/value

Several military doctrinal references suggest that planners select seaports based on habitual installation-to-port pairings, especially for early deployers. This work recommends a change to the military's current port selection process based on empirical analyses that show improvements to deployment timelines.

Details

Journal of Defense Analytics and Logistics, vol. 5 no. 2
Type: Research Article
ISSN: 2399-6439

Keywords

Content available
Article
Publication date: 6 August 2019

Ching-Wu Chu and Hsiu-Li Hsu

In this paper, the authors introduced a real world new problem, the multi-trip vehicle routing problem with time windows and the possible use of a less-than-truckload carrier to…

1074

Abstract

Purpose

In this paper, the authors introduced a real world new problem, the multi-trip vehicle routing problem with time windows and the possible use of a less-than-truckload carrier to satisfy customer demands. The purpose of this paper is to develop a heuristic algorithm to route the private trucks with time windows and to make a selection between truckload and less-than-truckload carriers by minimizing a total cost function.

Design/methodology/approach

Both mathematical model and heuristic algorithm are developed for routing the private trucks with time windows and for selecting of less-than-truckload carriers by minimizing the total cost function.

Findings

In all, 40 test problems were examined with the heuristics. Computational results show that the algorithm obtains the optimal or near-optimal solutions efficiently in terms of time and accuracy.

Originality/value

The research described in this paper differs from the previous one on fleet planning or vehicle routing, in that it modifies the Clarke and Wright method by shifting the performance measure from a distance to cost and also incorporates the fixed cost of different types of trucks into the model. In addition, the authors simultaneously consider the multiple trip vehicle routing problems with time windows and the selection of less-than-truckload carriers that is an integrated scenario of real-world application. To the best of the authors’ knowledge, this scenario has not been considered in the literature.

Details

Maritime Business Review, vol. 4 no. 3
Type: Research Article
ISSN: 2397-3757

Keywords

Content available
Article
Publication date: 8 November 2023

Ignacio Del Rosal

Liner shipping plays a crucial role in facilitating the movement of manufactured goods around the world. While previous literature has shown that liner shipping is an important…

Abstract

Purpose

Liner shipping plays a crucial role in facilitating the movement of manufactured goods around the world. While previous literature has shown that liner shipping is an important trade driver, potential differences across trade routes and world regions have not as yet been explored. This paper examines whether the impact of liner shipping on bilateral trade flows differs significantly across world regions, as well as exploring other geographical patterns.

Design/methodology/approach

Using state-of-the-art gravity modelling, this paper investigates the impact of the UNCTAD's Liner Shipping Bilateral Connectivity Index on bilateral trade in manufactured goods using a comprehensive database of disaggregated trade data for the period from 2006 to 2019.

Findings

The results show that the trade effect of liner shipping is greater in long-distance and interregional bilateral flows. For some regions, such as North America and Oceania, the effect is greater than the world average, while for others, such as Africa and South America, the effect is significantly smaller. The trade effects of liner shipping connectivity on the main east–west routes are average, but clear asymmetry emerges when analysing China's inward and outward trade flows separately.

Originality/value

The results of this paper show that the major east–west routes determine the baseline trade effects of liner shipping, demonstrate that some north–south trades such as those involving Oceania generate larger trade effects and confirm that the trade effects of liner shipping can be improved for some world regions such as South America and Africa.

Details

Maritime Business Review, vol. 9 no. 1
Type: Research Article
ISSN: 2397-3757

Keywords

Open Access
Article
Publication date: 13 February 2020

John A. Kearby, Ryan D. Winz, Thom J. Hodgson, Michael G. Kay, Russell E. King and Brandon M. McConnell

The purpose of this paper is to investigate US noncombatant evacuation operations (NEO) in South Korea and devise planning and management procedures that improve the efficiency of…

3167

Abstract

Purpose

The purpose of this paper is to investigate US noncombatant evacuation operations (NEO) in South Korea and devise planning and management procedures that improve the efficiency of those missions.

Design/methodology/approach

It formulates a time-staged network model of the South Korean noncombatant evacuation system as a mixed integer linear program to determine an optimal flow configuration that minimizes the time required to complete an evacuation. This solution considers the capacity and resource constraints of multiple transportation modes and effectively allocates the limited assets across a time-staged network to create a feasible evacuation plan. That solution is post-processed and a vehicle routing procedure then produces a high resolution schedule for each individual asset throughout the entire duration of the NEO.

Findings

This work makes a clear improvement in the decision-making and resource allocation methodology currently used in a NEO on the Korea peninsula. It immediately provides previously unidentifiable information regarding the scope and requirements of a particular evacuation scenario and then produces an executable schedule for assets to facilitate mission accomplishment.

Originality/value

The significance of this work is not relegated only to evacuation operations on the Korean peninsula; there are numerous other NEO and natural disaster related scenarios that can benefit from this approach.

Details

Journal of Defense Analytics and Logistics, vol. 4 no. 1
Type: Research Article
ISSN: 2399-6439

Keywords

Content available
Article
Publication date: 26 June 2019

Dave C. Longhorn and Joshua R. Muckensturm

This paper aims to introduce a new mixed integer programming formulation and associated heuristic algorithm to solve the Military Nodal Capacity Problem, which is a type of supply…

1063

Abstract

Purpose

This paper aims to introduce a new mixed integer programming formulation and associated heuristic algorithm to solve the Military Nodal Capacity Problem, which is a type of supply chain network design problem that involves determining the amount of capacity expansion required at theater nodes to ensure the on-time delivery of military cargo.

Design/methodology/approach

Supply chain network design, mixed integer programs, heuristics and regression are used in this paper.

Findings

This work helps analysts at the United States Transportation Command identify what levels of throughput capacities, such as daily processing rates of trucks and railcars, are needed at theater distribution nodes to meet warfighter cargo delivery requirements.

Research limitations/implications

This research assumes all problem data are deterministic, and so it does not capture the variations in cargo requirements, transit times or asset payloads.

Practical implications

This work gives military analysts and decision makers prescriptive details about nodal capacities needed to meet demands. Prior to this work, insights for this type of problem were generated using multiple time-consuming simulations often involving trial-and-error to explore the trade space.

Originality/value

This work merges research of supply chain network design with military theater distribution problems to prescribe the optimal, or near-optimal, throughput capacities at theater nodes. The capacity levels must meet delivery requirements while adhering to constraints on the proportion of cargo transported by mode and the expected payloads for assets.

Details

Journal of Defense Analytics and Logistics, vol. 3 no. 2
Type: Research Article
ISSN: 2399-6439

Keywords

Content available

Abstract

Details

New England Journal of Entrepreneurship, vol. 19 no. 2
Type: Research Article
ISSN: 2574-8904

Content available
Article
Publication date: 15 June 2017

Stephanie Finke and Herbert Kotzab

The purpose of this paper is to figure out in which way a hinterland-based inland depot model can help a shipping company in solving the empty container problem at a regional…

2518

Abstract

Purpose

The purpose of this paper is to figure out in which way a hinterland-based inland depot model can help a shipping company in solving the empty container problem at a regional level. The repositioning of empty containers is a very expensive operation that does not generate profits. Consequently, it is very important to provide an efficient empty container management.

Design/methodology/approach

In this paper, the empty container problem is discussed at a regional repositioning level. For solving this problem, a mixed-integer linear optimization model is developed and validated by using the German hinterland as a case.

Findings

The findings show that the hinterland-based solution is able to reduce the total system costs by 40 per cent. In addition, total of truck kilometres could be reduced by more than 30 per cent too.

Research limitations/implications

This research is based on German data only.

Originality/value

This paper closes the gap in empty container repositioning research by looking at the hinterland dimension from a single shipping company point of view.

Details

Maritime Business Review, vol. 2 no. 2
Type: Research Article
ISSN: 2397-3757

Keywords

Content available
Article
Publication date: 30 June 2016

Maxim A. Dulebenets

Emissions produced by oceangoing vessels not only negatively affect the environment but also may deteriorate health of living organisms. Several regulations were released by the…

8341

Abstract

Purpose

Emissions produced by oceangoing vessels not only negatively affect the environment but also may deteriorate health of living organisms. Several regulations were released by the International Maritime Organization (IMO) to alleviate negative externalities from maritime transportation. Certain polluted areas were designated as “Emission Control Areas” (ECAs). However, IMO did not enforce any restrictions on the actual quantity of emissions that could be produced within ECAs. This paper aims to perform a comprehensive assessment of advantages and disadvantages from introducing restrictions on the emissions produced within ECAs. Two mixed-integer non-linear mathematical programs are presented to model the existing IMO regulations and an alternative policy, which along with the established IMO requirements also enforces restrictions on the quantity of emissions produced within ECAs. A set of linearization techniques are applied to linearize both models, which are further solved using the dynamic secant approximation procedure. Numerical experiments demonstrate that introduction of emission restrictions within ECAs can significantly reduce pollution levels but may incur increasing route service cost for the liner shipping company.

Design/methodology/approach

Two mixed-integer non-linear mathematical programs are presented to model the existing IMO regulations and an alternative policy, which along with the established IMO requirements also enforces restrictions on the quantity of emissions produced within ECAs. A set of linearization techniques are applied to linearize both models, which are further solved using the dynamic secant approximation procedure.

Findings

Numerical experiments were conducted for the French Asia Line 3 route, served by CMA CGM liner shipping company and passing through ECAs with sulfur oxide control. It was found that introduction of emission restrictions reduced the quantity of sulfur dioxide emissions produced by 40.4 per cent. In the meantime, emission restrictions required the liner shipping company to decrease the vessel sailing speed not only at voyage legs within ECAs but also at the adjacent voyage legs, which increased the total vessel turnaround time and in turn increased the total route service cost by 7.8 per cent.

Research limitations/implications

This study does not capture uncertainty in liner shipping operations.

Practical implications

The developed mathematical model can serve as an efficient practical tool for liner shipping companies in developing green vessel schedules, enhancing energy efficiency and improving environmental sustainability.

Originality/value

Researchers and practitioners seek for new mathematical models and environmental policies that may alleviate pollution from oceangoing vessels and improve energy efficiency. This study proposes two novel mathematical models for the green vessel scheduling problem in a liner shipping route with ECAs. The first model is based on the existing IMO regulations, whereas the second one along with the established IMO requirements enforces emission restrictions within ECAs. Extensive numerical experiments are performed to assess advantages and disadvantages from introducing emission restrictions within ECAs.

Content available
Article
Publication date: 11 April 2018

Lee Evans and Ki-Hwan Bae

The paper aims to estimates the limitations of a forced distribution performance appraisal system in identifying the highest performing individuals within an organization…

2404

Abstract

Purpose

The paper aims to estimates the limitations of a forced distribution performance appraisal system in identifying the highest performing individuals within an organization. Traditionally, manpower modeling allows organizations to develop plans that meet future human resource requirements by modeling the flow of personnel within an organization. The aim is to quantify the limitations of a performance appraisal system in identifying the best-qualified individuals to fill future requirements.

Design/methodology/approach

This paper describes an exploratory study using discrete event simulation based on the assignment, evaluation and promotion history of over 2,500 officers in the US Army. The obtained data provide a basis for estimating simulation inputs that include system structure, system dynamics, human behavior and policy constraints. The simulation approach facilitates modeling officers who receive evaluations as they move throughout the system over time.

Findings

The paper provides insights into the effect of system structure and system dynamics on the evaluation outcome of employees. It suggests that decreasing the number of a rater’s subordinates has a significant effect on the accuracy of performance appraisals. However, increasing the amount of time individuals spend on each assignment has little effect on system accuracy.

Practical implications

This research allows an organization’s leadership to evaluate the possible consequences associated with evaluation policy prior to policy implementation.

Originality/value

This work advances a framework in assessing the effect of system dynamics and structure, and the extent to which they limit or enhance the accuracy of an organization’s forced distribution performance appraisal system.

Details

Journal of Defense Analytics and Logistics, vol. 1 no. 2
Type: Research Article
ISSN: 2399-6439

Keywords

Access

Only content I have access to

Year

Content type

Article (17333)
1 – 10 of over 17000