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Abstract
Purpose – This paper aims to introduce a new mixed integer programming formulation and associated
heuristic algorithm to solve the Military Nodal Capacity Problem, which is a type of supply chain network
design problem that involves determining the amount of capacity expansion required at theater nodes to
ensure the on-time delivery of military cargo.
Design/methodology/approach – Supply chain network design, mixed integer programs, heuristics
and regression are used in this paper.
Findings – This work helps analysts at the United States Transportation Command identify what levels of
throughput capacities, such as daily processing rates of trucks and railcars, are needed at theater distribution
nodes to meet warfighter cargo delivery requirements.
Research limitations/implications – This research assumes all problem data are deterministic, and so
it does not capture the variations in cargo requirements, transit times or asset payloads.
Practical implications – This work gives military analysts and decision makers prescriptive details
about nodal capacities needed to meet demands. Prior to this work, insights for this type of problem were
generated using multiple time-consuming simulations often involving trial-and-error to explore the trade
space.
Originality/value – This work merges research of supply chain network design with military theater
distribution problems to prescribe the optimal, or near-optimal, throughput capacities at theater nodes. The
capacity levels must meet delivery requirements while adhering to constraints on the proportion of cargo
transported bymode and the expected payloads for assets.

Keywords Heuristics, Regression analysis, Mixed integer programming,
Supply chain network design, Capacity expansion and contraction

Paper type Research paper

Introduction
Military theater distribution problems, or alternatively military deployment problems,
are similar to supply chain network design (SCND) problems. Both problems involve
the flow of commodities between facilities over supply routes. More importantly, both
problems necessitate the timely delivery of these commodities to meet customer
demands. The US Transportation Command (USTRANSCOM) is responsible for
identifying potential distribution shortfalls, which may prevent the on-time delivery of
military cargo between transportation nodes using available assets, such as trucks and
railcars (US Joint Chiefs of Staff, 2017). A significant challenge for analysts at the
USTRANSCOM is to identify the constraining factors during military theater
distribution operations. Although the constraints may be insufficient types or
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quantities of transportation assets, the theater nodes consisting of debarkation ports
and final destinations are often the constraint due to congestion and bottlenecks
inherent when processing large amounts of military cargo in a short timeframe (US
Joint Chiefs of Staff, 2013). As such, the remedy to ensuring on-time delivery is most
often to identify the required throughput capacities at theater nodes. Informally,
USTRANSCOM analysts have called this important transportation problem the
military nodal capacity problem (MNCP), which is the focus of this paper.

The MNCP closely resembles a SCND problem involving capacity expansion, which has
been studied extensively. The types of SCND problems most applicable to the MNCP have
three characteristics:

(1) treating capacity as a decision variable instead of a constraint;
(2) fully meeting customer demands instead of partially meeting demands given cost

tradeoffs; and
(3) permitting capacity changes on a continuous scale instead of allowing only

stepwise, or modular, changes.

Both deterministic and stochastic variants of these SCND problems exist in the literature;
however, this paper focuses exclusively on the deterministic variant, i.e. the input data is
assumed to be known with certainty. The reader is directed to the work of Govindan et al.
(2017) for a recent survey on stochastic variants of the SCND problem.

The primary decisions of most SCND problems involve determining the location of
supply facilities (usually warehouses or distribution centers) and deciding the optimal
capacity levels needed to meet customer demands. The nodal locations are usually pre-
determined in military theater distribution problems, so decisions about locations are not
considered in the MNCP. Also, capacity levels in SCND problems usually involve storage or
throughput at nodes, whereas capacity levels in the MNCP reflect daily throughput of cargo
at theater nodes via various transportation assets (US Headquarters of the Army, 2014b).
Theater logisticians need to understand current capacity levels at theater nodes, as well as
any potential capacity constraints that may delay distribution operations. More importantly,
the specific capacity levels that could overcome nodal capacity constraints would be critical
information to decision-makers, who could add personnel or equipment to the inadequate
nodes to improve the infrastructure and maximize throughputs (US Headquarters of the
Army, 2014b). There have been too few applications of SCND by analysts at the
USTRANSCOM to answer this important military logistics problem. Instead, analytic
methods at the command have relied on time-consuming iterations of simulation tools to
identify the required capacity levels of hundreds of nodes and for thousands of movement
requirements.

The MNCP is to determine the minimum daily nodal capacities required in terms of
trucks per day and railcars per day, via expansion above the current capacities, given the
following considerations:

� required flow of military cargo, as prescribed by a time-phased force deployment
and data (TPFDD), which provides detailed information on the amounts of cargo to
transport from debarkation ports to final destinations for each day;

� transportation information, including transport asset payloads, transport times over
the physical distribution network, and the proportion of cargo requirements to move
via each transport mode; and

� nodal information, including the current daily nodal throughput capacities in terms
of number of transportation assets, usually trucks per day and railcars per day.
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The focus of this paper is to solve the MNCP by ensuring the on-time delivery of military
cargo requirements, subject to transportation and nodal throughput information. The
methods used include mathematical programming, specifically a mixed integer program
(MIP) to optimize daily nodal capacities by mode to meet distribution requirements, as well
as a heuristic algorithm to provide near-optimal solutions for large instances of the MNCP,
which would be computationally inefficient to solve using the MIP. The results of the MIP
and heuristic solutions are compared for a relatively large problem indicative of problems
encountered by analysts at the USTRANSCOM. In addition, the MIP and heuristic solutions
for 27 randomly generated problems are compared to assess the accuracy and suitability of
the heuristic. Regression analysis is then used to identify significant predictors of capacity
expansion errors observed in the heuristic solutions. Finally, suggestions for future work on
theMNCP are provided for other researchers.

Literature review
Although the MNCP has not been directly addressed in the literature, capacity decisions
with respect to supply chain nodes have been the focus of much research under the broader
topic of SCND. The reader is directed to the works of Julka et al. (2007) and Cuda et al. (2015)
for surveys of deterministic capacity decision problems; however, the papers that best align
with the MNCP are described in this section. The most typical solution approaches in the
literature were optimal mathematical programs for small problems and non-optimal
heuristics to solve larger problems due to the computational challenges of exact solution
methods.

There are three key distinctions between the applicable research of this problem:
� whether capacity changes are continuous or modular;
� whether customer demands are fully met; and
� the approaches used to solve the problems.

The most prevalent research seems to involve determining modular capacity levels to fully
meet customer demands by applying both mathematical programs and heuristics (Shulman,
1991; Antunes and Peeters, 2001; Rajagopalan and Swaminathan, 2001; Amiri, 2006; Thanh
et al., 2010; Javid and Azad, 2010; Sadjady and Davoudpour, 2012; Melo et al., 2012; Badri
et al., 2013; and Jena et al., 2016). Other researchers have used only heuristics to make
modular capacity decisions that fully meet customer demands, including Bean and Smith
(1985), Syam (2000) and Dias et al. (2008). Still others have used only mathematical programs
to determine optimal modular capacity levels that fully meet customer demands, including
Lee and Luss (1987), Aghezzaf (2005), Thanh et al. (2008), Wilhelm et al. (2013), Delmelle et al.
(2014), Cortinhal et al. (2015) and Castro et al. (2017). Finally, several authors have considered
modular capacity decisions to partially meet customer demands with a focus on
mathematical programs (Bashiri et al., 2012; Correia et al., 2013; and Correia and Melo, 2017),
with the problems involving tradeoffs between fully meeting demands and reducing costs.

Most research has focused on modular capacity due to the discrete, step-wise changes in
capacity by either installing (in the case of capacity expansion) or removing (in the case of
capacity contraction) physical components of supply or warehouse facilities. As such,
relatively few authors have allowed continuous changes to capacity levels to meet customer
demands. Notably, Fong and Srinivasan (1981) and Fong and Srinivasan (1986) applied both
mathematical programming and heuristics to the capacity expansion problem, while
allowing continuous changes in capacity levels. Although continuous capacities may not be
typical of SCND problems, they are applicable for the MNCP because nodal throughputs, in
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terms of transportation asset processing rates per day, are often represented by non-discrete
capacity levels (US Headquarters of the Army, 2014b). As an example, the graph in Figure 1
shows the pairwise railcar and truck daily processing rates at 52 key US Army nodes, which
represent non-modular capacity levels of a continuous nature.

Some research reviewedwas not necessarily applicable to theMNCP because capacity was:
� treated as a constraint instead of a decision variable (Geoffrion and Graves, 1974;

Ambrosino and Scutella, 2005; Eskigun et al., 2005; Belenguer et al., 2011; Boujelben
et al., 2014; Boujelben et al., 2016; and Tavakkoli-Moghaddam and Raziei, 2016);

� had an associated lead time before capacity was allowed to expand (Gaimon and
Burgess, 2003); or

� was allowed to expand only once during the associated timeline (Dangl, 1999).

In addition, the research by Hsu (2002) was not applicable due to unmet customer demands,
which the author allowed via deferred capacity expansion until higher demands could
justify expansion costs.

The research referenced in this paper was useful in developing the MIP and heuristic
algorithm to solve the MNCP. Specifically, the MIP and heuristic of the MNCP adopt the
common research theme that capacity expansion can be a decision variable to meet
customer demands occurring over a delivery timeline. In addition, the present research
supports the general consensus that a MIP can provide exact solutions for relatively small
problems; however, the challenge is to develop a heuristic that provides near-optimal
solutions to large problems in a timeframe that is acceptable to decision-makers. The
methods and results presented next suggest the MIP and heuristic are useful to analysts at
the USTRANSCOM to solve theMNCP.

Methods
Notation
The MNCP involves estimating required capacity levels at each theater node to meet cargo
transport requirements on a prescribed timeline subject to various transportation
constraints. The set of TPFDD requirements I is indexed by i. The amount of cargo
associated with requirement i, measured in short tons, is represented as Ai. Next, there are
exactly two nodes associated with each requirement. First, each requirement originates at a
port node, which is either a seaport or an airport. Let P be the set of all ports and let Pi [ P be

Figure 1.
Railcar and truck

daily processing rates
at 52 key army nodes
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the port for requirement i. Second, each requirement is to be delivered to a destination node,
so let D represent the set of destinations and let Di [ D be the destination for requirement i.
Likewise, there are two dates associated with each requirement i. First, each requirement
can begin departing its port (Pi) on a known start day, which is represented by Si. Second,
each requirement must be delivered to its destination (Di) by a known end day represented
byEi.

In addition, the MNCP considers various transportation-specific information, which can
be influenced by the military commander in the theater. First, let M be the set of possible
transport modes, with road and rail the most often used modes based on cargo type, size and
weight (US Headquarters of the Army, 2014a). Then, let m represent a specific transport
mode and let Rm be the expected constant payload, measured in short tons, for each asset of
transport modem. Similarly, let Qm reflect the proportion of total cargo in the TPFDD to be
transported by mode m. Next, let V be the set of operation days and let v be a specific day
within the timeframe of the operation. Then, let Li,m be the transport time, measured in
number of days, for requirement i moving between the port (Pi) and destination (Di) nodes
via transport mode m. The transport time is a positive integer computed by dividing the
associated route distance by the asset speed for each mode and then rounding to the next
higher integer. Finally, let k be a generic theater location with k [ (P|D) and also let Ck,m,v
represent the current capacity at location k via modem on day v.

Assumptions
The data associated with the MNCP are assumed to be known with certainty, including the
requirements, transportation and nodal information. In addition, each requirement involves
transporting cargo from a single port to a single destination via each transport mode m,
although the transport time may differ for each mode m. The start day Si must be strictly
less than the end day Ei for each requirement i to allow sufficient travel time. Similarly,
assets must have enough time to complete at least a single delivery from each port and
destination pairing, i.e. Li,m must be less than or equal to Ei minus Si for each mode m. In
addition, nodal capacity levels can be increased or decreased from one day to another, i.e.
there are no lead times associated with changing capacity levels at nodes. Also, there are no
restrictions on the amount of capacity that can be added at each node and there are no cargo
storage limits at nodes. Finally, the MNCP assumes an unlimited, homogeneous fleet of
transportation assets having payloads and speeds differentiated only by the transport
modem.

Mixed integer program formulation
The MIP formulation identifies the minimal amount of daily capacity expansion required at
each theater node for each transport mode to meet TPFDD movement requirements.
Additionally, the MIPminimizes the sum of peak capacities over all theater nodes, but not at the
expense of delivering cargo late. The MIP requires additional notation, including w to represent
a generic daywithw [V and j to represent a generic theater locationwith j [ (P|D).

TheMIP requires four decision variables:
� xi,k,m,v – Number of loads for requirement i departing location k via mode m on day

v;
� yi,k,m,v – Number of loads for requirement i arriving to location k via mode m on day

v;
� zk,m,v – Required capacity expansion at location k via modem on day v; and
� uk,m – Peak capacity expansion used at location k via modem during the operation.
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TheMIP formulation is given in equations (1) through (9):

minimize
X

k2 P [Dð Þ

X
m2M

X
v2V

zk;m;v þ
X

k2 P [Dð Þ

X
m2M

uk;m (1)

Subject to:

XEi�Li;m

v¼Si

xi;k;m;v*Rm � Qm*Ai 8i 2 I 8kjk ¼ Pi 8m 2 M (2)

xi;k;m;v � yi;j;m;w ¼ 0 8i 2 I 8k k ¼ Pi 8jjj ¼ Di 8m 2 Mj

8v v � Si and v#Ei � Li;m
� ���

8w w ¼ vþ Li;m
�� (3)

zk;m;v �
X
i2I

xi;k;m;v þ yi;k;m;vð Þ � Ck;m;v 8k 2 P [Dð Þ 8m 2 M 8v 2 V (4)

uk;m � zk;m;v 8k 2 P [Dð Þ 8m 2 M 8v 2 V (5)

uk;m � 0 8k 2 P [Dð Þ 8m 2 M (6)

xi;k;m;v � 0 and integer 8i 2 I 8k 2 P [Dð Þ 8m 2 M 8v 2 V (7)

yi;k;m;v � 0 and integer 8i 2 I 8k 2 P [Dð Þ 8m 2 M 8v 2 V (8)

zk;m;v � 0 and integer 8k 2 P [Dð Þ 8m 2 M 8v 2 V (9)

The first component of the objective function in equation (1) reflects the total nodal capacity
expansion in the theater, the minimization of which is the primary goal of the MIP. The second
component of the objective function in equation (1) minimizes the sum of peak nodal capacity
expansions over the nodes during the operation, e.g. two consecutive days at capacity level 50
is preferred to a single day at capacity level 100 if both options will meet requirements.
Equation (2) ensures enough departures from the port occur to meet movement requirements
during the delivery window, subject to the proportion of cargo to be transported by each mode
and the corresponding asset payload. Equation (3) is a flow conservation equation that links the
departures each day of the delivery window from a specific port to the arrivals each day at the
corresponding destination given the transport time by mode. Equation (4) permits capacity
expansion above the current capacity level to meet the combined daily departures and arrivals
at each node. Equation (5) determines the peak capacity expansion for each node and by each
mode over the entire operation. Equation (6) ensures non-negative variables and equations (7)
through (9) ensure non-negative integer variables.
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Heuristic notation and pseudocode
The MNCP heuristic requires additional notation beyond that used for the associated MIP.
First, let Fi,m represent the number of allowable delivery days for requirement i via transport
mode m, as computed with equation (10), which is based on the start day, end day, and
transport time:

Fi;m ¼ Ei � Si � Li;m þ 1 (10)

Second, letWi;m represent the expected amount of daily cargo that should be transported for
requirement i by mode m, as computed with equation (11), which is based on the amount of
cargo, the modal proportion and the allowable delivery days:

Wi;m ¼ Ai *Qmð Þ
Fi;m

(11)

Next, let Hv be the set of requirements with active movements during day v; thus,
Hv � I for all v and set membership is defined according to the condition stated in
equation (12):

i 2 Hv if Si # v# Si þ Li;m � 1
� � 8i 8m (12)

Finally, let Gk,m,v be a non-negative integer counting variable that represents the number of
assets processed at location k of transport mode m on day v. The following pseudocode
outlines theMNCP heuristic algorithm:

AlgorithmMilitary Nodal Capacity Problem
1: Calculate Fi,m andWi,m
2: Build setHv
3: InitializeGk,m,v/0
4: Declare minday =min (Si)
5: Declare maxday =max (Ei)
6: for each v in (minday: maxday) do
7: for each i inHv do
8: for eachm [M do
9: if v# SiþLi,m�1 then
10: whileWi,m> 0 do
11: Wi,m/Wi,m�Rm
12: GPi,m,v/GPi,m,vþ1
13: GDi,m,(vþLi,m)/GDi,m,(vþLi,m)þ1
14: endwhile
15: end if
16: end for
17: end for
18: end for
19: output expansion estimate zk;m;v ¼ Gk;m;v � Ck;m;v ifGk;m;v > Ck;m;v

0 otherwise

�

Measures
Decisionmakers are interested in two theater-wide metrics, which are generated for theMIP and
heuristic. These metrics provide insights into the total capacity expansion required to ensure the
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on-time delivery of military cargo in the theater. First, let Tm be the total capacity expansion
required over all nodes and all days by transport modem, as defined in equation (13):

Tm ¼
X

k2 P [Dð Þ

X
v2V

zk;m;v (13)

Second, let T be the total capacity expansion required over all nodes, all days, and all
transport modes, as defined in equation (14):

T ¼
X
m2M

Tm (14)

Additionally, decision makers are interested in two nodal metrics, which are generated for the
MIP and heuristic. These metrics provide insights into which nodes require capacity expansion
as well as how much capacity expansion is needed. First, let Nk,m be the total capacity
expansion required at node k over all days by transport modem, as defined in equation (15):

Nk;m ¼
X
v2V

zk;m;v (15)

Second, let Bk,m be the peak capacity (i.e. current capacity plus expanded capacity) at node k
by transport modem over all days, as defined in equation (16):

Bk;m ¼ max Ck;m;v þ zk;m;v
� �

: v 2 V
� �

(16)

Finally, each theater-wide and nodal metric is reported with superscripts, o for optimal and h
for heuristic, to distinguish between theMIP and heuristic metrics, respectively.

Results
This section presents the results of two types of notional problems solved using both the
MIP and heuristic algorithm. First, a large-scale problem indicative of a typical MNCP
encountered at the USTRANSCOM is studied. Second, 27 randomly generated notional
problems of various sizes and attributes are examined to further test the accuracy and
suitability of the present heuristic. A typical MNCP is within an overseas country
transporting cargo from debarkation ports to final destinations; however, to avoid security
classification issues, the problems presented in this paper are entirely within the USA with
cargo moving from ports to inland destinations.

Assessment measures
Equations (17) and (18) are used to assess the relative per cent error of the heuristic solution
compared to theMIP solution with respect to the theater-wide capacity expansionmetrics:

Theater_Em ¼ Th
m � To

m

To
m

* 100 (17)

Theater_E ¼ Th � To

To * 100 (18)
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Similarly, the equations (19) and (20) are used to assess the relative per cent error of the
heuristic solution compared to the MIP solution with respect to the two nodal capacity
expansion metrics. Equation (19) returns the median nodal error over all nodes for each
transport mode. The median error is preferred over the mean error because real problems
previously studied have shown a positive skew in the distribution of nodal errors. Likewise,
equation (20) returns the median absolute error in nodal peaks over all nodes for each
transport mode. As with equation (19), the median error is preferred to the mean error given
the positive skew of the error distribution. In addition, the absolute error is required in
equation (20) because the MIP is not guaranteed to produce a minimal peak at the individual
node level, i.e. it is conceivable that the heuristic will yield a lower absolute peak capacity
expansion at a node compared to the MIP. This phenomenon occurs because the secondary
objective of theMIP is to minimize the sum of peak nodal capacities over all nodes; therefore,
higher peaks at some nodes compared to the heuristic are possible although the sum of
peaks over all nodes will always be lower compared to the heuristic:

Node_Em ¼ median
Nh
k;m � No

k;m

No
k;m

*100

 !
: k 2 P [Dð Þ

( )
(19)

Peak_Em ¼ median

��Bh
k;m � Bo

k;m

��
Bo
k;m

*100

 !
: k 2 P [Dð Þ

( )
(20)

The final metric, as given in equation (21), is the per cent time difference of the heuristic
solution compared to the MIP solution. Let CPUh represent the heuristic solution time in
seconds and let CPUo represent the MIP solution time in seconds. Negative values of the
metric therefore reflect computational savings of the heuristic compared to theMIP:

Time_Delta ¼ CPUh � CPUo

CPUo * 100 (21)

Large-scale military nodal capacity problem description
This large-scale MNCP involves transporting military cargo from US ports to inland
destinations using roads and railways. This problem has 1,719 separate requirements
totaling about 1.2M short tons of cargo, which must be transported via truck (Qroad = 0.3)
and rail (Qrail = 0.7) from 14 debarkation ports to 18 total destinations. Transportation asset
payloads are assumed to be 13 short tons per truck (Rroad = 13) and 33 short tons per railcar
(Rrail= 33), which are based on historical average payloads of typical problems. Figure 2 shows
the physical network of roads and railways connecting the 14 ports to the 18 destinations. The
modal transport times for each requirement (Li,m) between ports and destinations are
determined from the associated distances and speeds of the transportation assets. Asset speeds
are assumed to be 40 miles per hour for trucks and 22 miles per hour for railcars, which are
based on average historical speeds accounting for typical operational delays.

The distribution of cargo requirements is represented by the histogram in Figure 3. The
distribution has a range of about 6,500 short tons, which is typical of most transportation
problems due to requirements reflecting a vast range of light relief supplies to heavy
military equipment. However, most of the requirements are less than about 500 short tons.
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Large-scale military nodal capacity problem results
The large-scale MNCP was solved with the MIP and with the heuristic. The MIP solution
resulted in a total capacity expansion (To) of 110,618. The optimal total capacity expansions
by transport mode were To

road ¼ 57; 416 andTo
rail ¼ 53; 202. Conversely, the heuristic

solution resulted in a total capacity expansion (Th) of 114,922 with Th
road ¼ 59; 948

andTh
rail ¼ 54; 974. The theater-wide metrics errors were thus Theater_Eroad = 4.4 per cent,

Theater_Erail = 3.3 per cent, and Theater_E=3.9 per cent. Figure 4 shows the cumulative
theater-wide capacity expansion measures by day of the operation for the MIP and heuristic,
as well as the associated breakdowns by road and rail. A cumulative capacity expansion
visual is often preferred by analysts and decision-makers, because it lessens the complexity
of daily capacity spikes and shows the incremental nature of capacity expansion over time.
As expected, the required capacity expansion prescribed by the heuristic exceeds the
optimal throughout the deployment. The graph also shows a nearly identical shape between
the heuristic andMIP solutions with errors increasing slowly throughout the operation.

The total nodal capacity expansion metrics were also calculated for each of the 32 theater
nodes. Figure 5 (for m = road) and Figure 6 (for m = rail) compare the MIP (solid line) and

Figure 3.
Cargo distribution of

large-scaleMNCP

Figure 2.
Physical network of
roads and railways

connecting ports and
destinations for the
large-scaleMNCP
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heuristic (dashed line) solutions with respect to the cumulative nodal capacity expansion (vertical
axis) on each day (horizontal axis) for each node, with nodes presented in no particular order.

The distribution of nodal capacity errors for the large-scale MNCP is provided in Figure 7,
with each histogram showing a positive skew. The non-normal distribution of errors is further
support for using the median error instead of the mean error for this assessment measure. The
median errors at the nodal level by transport mode wereNode_Eroad= 4.7 per cent [Figure 7(a)]
and Node_Erail = 2.7 per cent [Figure 7(b)], which were generally consistent with the theater-
wide capacity expansion errors. Also, the median errors in peak nodal capacity expansion by
transport mode were Peak_Eroad = 23.6 per cent [Figure 7(c)] and Peak_Erail = 25.0 per cent
[Figure 7(d)]. An analysis of the possible causes of the relatively high peak capacity errors at
the nodal level is provided in the Discussion section.

Finally, the solution time of the heuristic was substantially lower (56 seconds) compared
to the MIP (123,961 s), which resulted in Time_Delta = �99.95 per cent. Prior to the present
research into MNCPs, analysts at the USTRANSCOM would iteratively adjust simulation
settings reflecting capacities at hundreds of theater nodes, run the mobility simulation
program, assess whether the adjusted nodal capacities met delivery requirements, and if not,
the process was repeated. This time-consuming process could take at least a week and
would rarely yield near-optimal capacities. As such, the considerable time savings of the
MNCP heuristic and the demonstrated near-optimal results allows analysts at the
USTRANSCOM to dedicate more time to other aspects of the problem, such as identifying
transport asset requirements or recommending alternative ports.

Randomly generated problems
The large-scale MNCP results showed the relative accuracy and computational efficiency of
the heuristic in solving a typical, large-scale problem at the USTRANSCOM. To study the
suitability of the heuristic across a range of increasingly demanding problems, twenty-seven
randomly generated problems were solved using the MIP and heuristic. Each random
MNCP instance is distinguishable by three modified variables: the number of requirements

Figure 4.
Cumulative total
capacity expansion
for large-scale MNCP;
optimal vs heuristic
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(reqts), the number of locations (locs), and the number of days (days). The corresponding sets
of variable inputs tested were reqts = {100,300,500}, locs = {10,30,50}, and days =
{50,100,200}.

For each random problem instance, the asset payloads and proportions were the same as
in the large-scale scenario, i.e. Qroad = 0.3, Rroad = 13, Qrail = 0.7, and Rrail = 33. Also, the
locations were randomly split into possible ports (30 per cent of the number of locations) and
possible destinations (the remaining 70 per cent of the number of locations). Finally, the
requirements were assigned various random attributes, as described in Table I.

The modified variable settings and associated assessment measures for the random MNCP
instances are given in Table II. The reported errors of the assessmentmeasures for total capacity
by mode, total capacity, and nodal capacity by mode are relatively stable at about 2 per cent or
less. Conversely, the errors of the assessment measure peak nodal capacity ranged from zero per
cent to almost 100 per cent. As noted with the large-scale MNCP, further exploration of the
relatively high errors in peak nodal capacity is provided in the Discussion section.

Figure 5.
Cumulative total
nodal capacity

expansion (road) for
large-scale MNCP;

optimal vs heuristic
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Software and hardware specifications
The MIP was implemented in the General Algebraic Modeling System v24.3.3 software. The
relative and absolute optimality tolerances of the software’s CPLEX solver were set to 0.1 per cent
of optimal to avoid unnecessarily long execution times. The heuristic algorithmwas implemented
in the RStudio v1.1.453 software (Team, 2017) using R v3.5.1 and the R package openxlsx
(Walker and Braglia, 2018) for reading input data and outputting results. The solutions for both
the MIP and heuristic were generated on a common computing environment, specifically a 64-bit
Windows 7 computer with an Intel Xeon CPU at 3.33GHz and 48GB of RAM.

Discussion
The MNCP results compare favorably with the results of previous researchers, who
developed various heuristics to determine optimal or near-optimal capacity expansion levels
for SCND problems. Previous heuristics yielding results within about one per cent of the
optimal solution include those by Fong and Srinivasan (1981), Javid and Azad (2010), Melo
et al. (2012) and Jena et al. (2016). Sadjady and Davoudpour (2012) also achieved heuristic

Figure 6.
Cumulative total
nodal capacity
expansion (rail) for
large-scaleMNCP;
optimal vs heuristic
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results within 1 per cent of the optimal solution, but only for small problem instances. Other
researchers produced heuristics within about three per cent of the optimal solution,
including Shulman (1991), Rajagopalan and Swaminathan (2001), Amiri (2006), Thanh et al.
(2010) and Sadjady and Davoudpour (2012). Finally, the heuristic by Badri et al. (2013)
produced results within about four per cent of the corresponding optimal solutions.

Error analysis
As shown in Table II, the MNCP heuristic consistently provides results within about two per
cent of optimal results for the theater-wide and total nodal capacity metrics across most

Figure 7.
Distribution of total

nodal capacity errors
and peak nodal

capacity errors for
large-scaleMNCP

Table I.
Random attributes

assigned to
requirements for

each MNCP instance

Variable name Variable Assignment rule

Port Pi Random draw from possible ports (30% sample of locations)
Destination Di Random draw from possible destinations (remaining 70%

sample of locations)
Cargo in short tons Ai Integer(Uniform(4000,5000))
Transport time (road) in days Li,road Random draw from integer set {1,2,. . .,6}
Transport time (rail) in days Li,rail Random draw from integer set {1,2,. . .,7}
Start day Si Random draw from integer set {1,2,. . .(number of days - Max

(Li,road,Li,rail))}
End day Ei Min(number of days, Si þMax(Li,road,Li,rail)þ Integer(Uniform

(0,5))
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Variable settings and
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problems studied. However, peak nodal errors were less consistent with an observed range
from zero per cent to about 100 per cent compared to optimal results. The rationale for the
heuristic giving higher capacities, especially with respect to peak nodal capacities, stems
from the greedy nature of the algorithm. First, the heuristic splits each cargo requirement
into smaller requirements that are spread evenly during the allowable delivery days per
equations (10) and (11). Thus, the MIP can meet small cargo requirements with a fully
loaded asset on a single day of the allowable delivery window [Figure 8(a)], whereas the
heuristic might require partially loaded assets on each day spread over the allowable
delivery window [Figure 8(b)].

In addition, the MIP can shift cargo movements anywhere within the allowable delivery
window [Figure 9(a)], whereas the heuristic must evenly spread cargo movements to each
day of the allowable delivery window [Figure 9(b)].

Advantages of the heuristic
Although the MIP will outperform the heuristic in terms of minimizing capacity expansions, the
heuristic still provides near-optimal capacity expansion estimates for three of the four key
assessment measures and, more importantly, provides computational time savings of about 86
per cent on average for the random problems studied in this paper. Indeed, the highest
computational savings occur with the larger problems studied, which are more typical of real
problems studied at the USTRANSCOM. Thus, theMNCP heuristic provides stable, near-optimal
capacity expansion solutions for several key assessmentmetrics and is computationally efficient.

Regression analysis of random problem instances
A regression analysis of the errors in Table II was conducted to identify any statistically
significant factors in predicting the observed errors in assessment measures. The regressors
were the three modified variables in each MNCP instance: reqts, locs, and days. The low
variability of errors in total capacity expansion bymode (Theater_Eroad,Theater_Erail), total
capacity expansion (Theater_E), and total nodal capacity expansion by mode (Node_Eroad,
Node_Erail) resulted in no significant factors at the 0.05 alpha level. However, significant
models were achieved for peak nodal rail capacity expansion (Peak_Erail) errors (F-
stat=33.3, p< 0.001, Adjusted R2 = 0.79) and for peak nodal road capacity expansion
(Peak_Eroad) errors (F-stat=39.4, p< 0.001, Adjusted R2 = 0.82). In each fitted model, the

Figure 8.
ComparingMIP and
heuristic approaches

for meeting small
cargo requirements
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regressors (reqts, locs and days) were each significant at p< 0.001. No interaction effects
were found.

Finally, a regression analysis of the time delta results identified a significant model (F-
stat=8.7, p< 0.001, Adjusted R2=0.47) with locs (p< 0.001) and days (p=0.005) each
significant. Also, the model with locs, days and the interaction locs*days was likewise
significant (F-stat=20.9, p< 0.001, Adjusted R2 = 0.70) with both regressors and their
interaction significant at p< 0.001.

Additional sensitivity analyses
The previous regression analyses identified several significant regressors with respect to
peak errors; however, the seemingly low variability of errors for the remaining assessment
measures warranted further exploration. As such, additional sensitivity analyses were
conducted to better understand if the heuristic might yield larger errors due to changes in
other key problem variables. Two such variables, specifically the cargo range and the span
of the delivery window, were suspected of influencing capacity expansion errors based on
the greedy nature of theMNCP heuristic, as presented in Figures 8 and 9.

The additional variables under study, henceforth termed cargo and window, were
pairwise incrementally changed for a single random MNCP instance from Table II and
solved by the MIP and heuristic. Random problem 1 was selected due to its relatively small
size, with reqts=100, locs=10, and days=50, which facilitated faster MIP solution times.
Each sensitivity run involved incremental changes to the cargo and window problem
variables. Twelve incremental ranges of cargo short tons {1-500,501-1000,. . .,5501-6000}
were used for the cargo variable, with each requirement assigned a cargo value drawn from
a uniform distribution between the cargo range. For each incremental range of the cargo
variable, six incremental values reflecting additional delivery days from zero to five were
assigned to thewindow variable. The corresponding number of additional delivery days was
simply added to the associated end day (Ei) variable for each requirement. This pairwise
sensitivity design resulted in 72 instances of a relatively small-scale MNCP that could be
solved using the MIP and heuristic. The resultant errors in theater capacity expansion

Figure 9.
ComparingMIP and
heuristic approaches
for distributing
requirements within
the delivery window
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(Theater_E) are graphed on a response surface in Figure 10 to visualize the effects of
pairwise changes to the cargo andwindow variables.

Figure 10 shows relatively stable errors of less than about 10 per cent for runs with cargo
requirements above about 1,500 short tons, regardless of the size of the delivery window
expansion. However, as the cargo distribution range is lowered and the delivery window is
expanded, the associated errors can increase to over 60 per cent. A regression analysis of the
theater capacity expansion errors presented here identified a significant model (F-stat=26.9,
p< 0.001, Adjusted R2=0.42) with cargo (p< 0.001) and window (p=0.01) each significant.
Another model with the interaction term cargo*window included was also significant (F-
stat=21.7, p< 0.001, Adjusted R2 = 0.47), but the cargo term was then insignificant
(p=0.06), so this interaction model was abandoned in favor of the more parsimonious model
with cargo andwindow as the only regressors.

Conclusion
The research presented in this paper introduces a new type of SCND problem called the
MNCP, which is to identify the required capacity expansion levels at theater nodes to ensure
on-time delivery of military cargo from ports to destinations. Although supply chain
problems involving capacity decisions have been studied, the MNCP had not been examined
until this present work. Solution approaches to typical SCND problems have included

Figure 10.
Capacity expansion
errors given cargo

andwindow changes
for random problem 1
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optimal mathematical programs and near-optimal heuristics, with large instances of the
problems typically solved using heuristics. In this paper, an optimal MIP and a fast, near-
optimal heuristic were developed to solve real-world and random instances of theMNCP.

The heuristic results presented for a notional, large-scale MNCP with characteristics of
typical problems studied at the USTRANSCOM produced solutions within about 4 per cent of
optimal for three of the four measures of interest to decision makers. More importantly, the
heuristic vastly outperformed the MIP with a 99.95 per cent reduction in computation time. In
addition, the heuristic results for 27 random problem instances suggest the MNCP heuristic
performs well across a breadth of problem instances, with solutions consistently within about 2
per cent of optimal for three of the four key assessment metrics. Regression analysis showed
that the number of requirements, locations, and days were significant predictors of peak nodal
capacity expansion errors. Further analysis of the heuristic results suggests that high errors in
total capacity expansion occurs when cargo movement requirements are relatively small and
delivery windows are relatively wide, which was confirmed with regression analysis of the
associated errors given changes to regressors for cargo size and deliverywindow expansion.

Prior to this research, analysts at the USTRANSCOM used deterministic simulation tools
to estimate the nodal capacity expansion levels needed to meet theater transportation
requirements. This method was inherently time-consuming because it required the analyst
to conduct trial-and-error iterations with different nodal capacities until all transportation
requirements were met. Analysts at the command are now using the MNCP heuristic
described in this paper to provide near-optimal nodal capacity levels for diverse theater
distribution problems.

Future work
Future work on the MNCP could incorporate stochastic aspects of the MNCP encountered in
most real problems, such as uncertain cargo requirements, flexible start and end shipment
dates, variations in transportation asset payloads and variations in transport times due to
weather, congestion or enemy actions. In addition, future work could incorporate
heterogeneous fleets of transportation assets with different payloads and speeds, restrict the
capacity levels to some pre-determined limit based on resources or allow tradeoffs between
late deliveries and increased infrastructure capacity costs.
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