Search results

1 – 4 of 4
Article
Publication date: 26 August 2024

Junjie Gong, Zhixiang Li, Qingqing Lin and Kunhong Hu

This study aims to explore the synthesis and tribological performances of di-n-octyl sebacate (DOS) synthesized with spherical nano-MoS2/sericite (SMS) and carboxylated SMS (CSMS…

Abstract

Purpose

This study aims to explore the synthesis and tribological performances of di-n-octyl sebacate (DOS) synthesized with spherical nano-MoS2/sericite (SMS) and carboxylated SMS (CSMS) as catalysts.

Design/methodology/approach

SMS and CSMS were used as esterification catalysts to synthesize DOS from sebacic acid and n-octanol. The two catalysts were in situ dispersed in the synthesized DOS after the reaction to form suspensions. The tribological performances of the two suspensions after 20 days of storage were studied.

Findings

CSMS was more stably dispersed in DOS than SMS, and they reduced friction by 55.6% and 22.2% and wear by 51.3% and 56.5%, respectively. Such results were mainly caused by the COOH on CSMS, which was more conducive to improving the dispersion and friction reduction of CSMS than wear resistance. Another possible reason was the difference between the dispersion amounts of CSMS and SMS in DOS. The sericite of SMS was converted into SiO2 to enhance wear resistance, while that of CSMS only partially generated SiO2, and the rest still remained on the surface to reduce friction.

Originality/value

This work provides a more effective SMS catalytical way for DOS synthesis than the traditional inorganic acid catalytical method. SMS does not need to be separated after reaction and can be dispersed directly in DOS as a lubricant additive. Replacing SMS with CSMS can produce a more stable suspension and reduce friction significantly. This work combined the advantages of surface carboxylation modification and in situ catalytic dispersion and provided alternatives for the synthesis of DOS and the dispersion of MoS2-based lubricant additives.

Details

Industrial Lubrication and Tribology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 15 September 2023

Bilian Cheng, Gaoming Jiang, Junjie Zhao and Bingxian Li

The purpose of this paper is to conveniently and accurately design partial knitting knitted fabrics based on matrix transformation.

Abstract

Purpose

The purpose of this paper is to conveniently and accurately design partial knitting knitted fabrics based on matrix transformation.

Design/methodology/approach

Using mathematical modeling, the pattern diagram block matrix and process design matrix of partial knitting knitted fabrics are established, and the process knitting diagram with parameter information is generated. Based on the establishment of the mathematical model of the process knitting diagram, a loop deformation method based on three-dimensional (3D) coordinate point matrix transformation is proposed.

Findings

The matrix transformation method can provide a suitable deformed loop mode for partial knitting knitted fabrics and helps to generate a 3D modeling diagram conveniently.

Originality/value

This paper proposed a method of design and modeling of partial knitting knitted fabric based on matrix transformation. Taking the 3D modeling effect of conventional partial knitting as an example to test the modeling method, the results show that after matrix transformation, the loop model can realize the rapid transformation and calculation of the coordinates of the control point and generate a 3D modeling diagram.

Details

International Journal of Clothing Science and Technology, vol. 35 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 30 April 2024

Lin Kang, Junjie Chen, Jie Wang and Yaqi Wei

In order to meet the different quality of service (QoS) requirements of vehicle-to-infrastructure (V2I) and multiple vehicle-to-vehicle (V2V) links in vehicle networks, an…

Abstract

Purpose

In order to meet the different quality of service (QoS) requirements of vehicle-to-infrastructure (V2I) and multiple vehicle-to-vehicle (V2V) links in vehicle networks, an efficient V2V spectrum access mechanism is proposed in this paper.

Design/methodology/approach

A long-short-term-memory-based multi-agent hybrid proximal policy optimization (LSTM-H-PPO) algorithm is proposed, through which the distributed spectrum access and continuous power control of V2V link are realized.

Findings

Simulation results show that compared with the baseline algorithm, the proposed algorithm has significant advantages in terms of total system capacity, payload delivery success rate of V2V link and convergence speed.

Originality/value

The LSTM layer uses the time sequence information to estimate the accurate system state, which ensures the choice of V2V spectrum access based on local observation effective. The hybrid PPO framework shares training parameters among agents which speeds up the entire training process. The proposed algorithm adopts the mode of centralized training and distributed execution, so that the agent can achieve the optimal spectrum access based on local observation information with less signaling overhead.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 17 no. 3
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 29 March 2024

Han Zhao, Qingmiao Ding, Yaozhi Li, Yanyu Cui and Junjie Luo

This paper aims to study the influence of microparticles on the surface cavitation behavior of 2Cr3WMoV steel; microparticle suspensions of different concentration, particle size…

Abstract

Purpose

This paper aims to study the influence of microparticles on the surface cavitation behavior of 2Cr3WMoV steel; microparticle suspensions of different concentration, particle size, material and shape were prepared based on ultrasonic vibration cavitation experimental device.

Design/methodology/approach

2Cr3WMoV steel was taken as the research object for ultrasonic cavitation experiment. The morphology, quantity and distribution of cavitation pits were observed and analyzed by metallographic microscope and scanning electron microscope.

Findings

The study findings showed that the surface cavitation process produced pinhole cavitation pits on the surface of 2Cr3WMoV steel. High temperature in the process led to oxidation and carbon precipitation on the material surface, resulting in the “rainbow ring” cavitation morphology. Both the concentration and size of microparticles affected the number of pits on the material surface. When the concentration of microparticles was 1 g/L, the number of pits reached the maximum, and when the size of microparticles was 20 µm, the number of pits reached the minimum. The microparticles of Fe3O4, Al2O3, SiC and SiO2 all increased the number of pits on the surface of 2Cr3WMoV steel. In addition, the distribution of pits of spherical microparticles was more concentrated than that of irregularly shaped microparticles in turbidity.

Originality/value

Most of the current studies have not systematically focused on the effect of each factor of microparticles on the cavitation behavior when they act separately, and the results of the studies are more scattered and varied. At the same time, it has not been found to carry out the study of microparticle cavitation with 2Cr3WMoV steel as the research material, and there is a lack of relevant cavitation morphology and experimental data.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 3
Type: Research Article
ISSN: 0003-5599

Keywords

1 – 4 of 4