Search results

1 – 3 of 3
Article
Publication date: 12 November 2021

Leysmir Adriana Millan Mirabal, Oualid Messal, Abdelkader Benabou, Yvonnick Le Menach, Loic Chevallier, Jean-Yves Roger and Jean-Pierre Ducreux

The purpose of this study is to explore the effect of the demagnetizing field in the Epstein characterization of grain-oriented electrical steels through a finite element method…

Abstract

Purpose

The purpose of this study is to explore the effect of the demagnetizing field in the Epstein characterization of grain-oriented electrical steels through a finite element method (FEM) simulations.

Design/methodology/approach

A 3D finite element simulation has been realized to represent the parallel and X-stacking configurations in the Epstein frame. The numerical results have been compared with experimental measures.

Findings

In a parallel configuration, the measured induction is actually the one in the material, whereas the resulting magnetic field differs from the applied one (in magnitude and angle) due to the shape anisotropy (demagnetizing field). In X-stacking configuration, the resulting magnetic field is close to the applied magnetic field (and then the supposed excitation field in the Epstein frame), whereas the magnetic induction has deviated from the axis of the strips.

Originality/value

Both stacking configurations (parallel and cross) of the Epstein frame are analyzed by three-dimensional finite element simulation.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 41 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 8 May 2009

Jean‐Yves Roger, Emmanuel Vrignaud, Thomas Henneron, Abdelkader Benabou and Jean‐Pierre Ducreux

Coreplates in large generators may suffer from local short circuits. An accurate analysis is required to avoid these failures and detect them when occurring. The purpose of this…

Abstract

Purpose

Coreplates in large generators may suffer from local short circuits. An accurate analysis is required to avoid these failures and detect them when occurring. The purpose of this paper is to develop a lamination stack model compliant with interlamination default analysis.

Design/methodology/approach

An electromagnetic model should account for the eddy‐current in the lamination stack. To avoid the modelling of the insulation between the steel sheets, the authors propose to introduce a condition on the fields applied between each sheet. In the case of electric fault between several sheets, the conducting domain, i.e. the sheets, is not simply connected. Then, T‐Ω formulation must be adapted to solve such problem.

Findings

The model allows to account for thin plates, insulating layers and electrical faults in electromagnetic modeling of core plates. This study leads to a first evaluation of eddy current losses in steel laminations with defaults.

Research limitations/implications

The present study does not take into account thermal effects. The next step will consist in a magneto‐thermal computation. Thus, an electromagnetic finite element software must be coupled with a thermal one. An other improvement will rely on the study of actual situation in order to evaluate the accuracy of industrial sensors and to compare with measurements.

Originality/value

The paper develops a lamination stack model compliant with interlamination default analysis. As far as the authors know, this is the first study on 3D electromagnetic modeling.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 28 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 January 2006

Xiaodong Shi, Yvonnick Le Menach, Jean‐Pierre Ducreux and Francis Piriou

To compare slip surface and moving band techniques for modelling movement in 3D with FEM.

Abstract

Purpose

To compare slip surface and moving band techniques for modelling movement in 3D with FEM.

Design/methodology/approach

The slip surface and moving band techniques are used to model the rotation of electrical machines in 3D with FEM. The proposed techniques are applied to a permanent magnet synchronous machine. The comparison is carried out at no‐load for the electromotive force (EMF) and the cogging torque. The torque is also compared for the short circuit case.

Findings

For both the locked‐step and moving band approaches there is no difficulty in establishing the scalar potential and potential vector formulations. However, if step displacement is not equal to the mesh step, the results can show numerical irregularities. Some improvements have been proposed in order to limit this problem.

Originality/value

The results of the EMF and the cogging torque are improved.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 25 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 3 of 3