Search results

1 – 10 of 34
Article
Publication date: 1 January 2009

X.Q. Zhang

widely‐used hypoelastic model for four well‐known objective stress rates under a four‐phase stress cycle associated with axial tension and/or torsion of thin‐walled cylindrical…

Abstract

widely‐used hypoelastic model for four well‐known objective stress rates under a four‐phase stress cycle associated with axial tension and/or torsion of thin‐walled cylindrical tubes. Here, two kinds of models based upon the Cauchy stress and the Kirchhoff stress will be treated. The reduced systems of differential equations of these rate constitutive equations are derived and studied for Jaumann, Green‐ Naghdi, logarithmic and Truesdell stress rates, separately. Analytical solutions in some cases and numerical solutions in all cases are obtained using these reduced systems. Comparisons between the residual deformations are made for different cases. It may be seen that only the logarithmic stress rate results in no residual deformation. In particular, results indicate that Green‐Naghdi rate would generate unexpected residual deformation effect that is essentially different from that resulting from Jaumann rate. On the other hand, it is realized that this study accomplishes an alternative, direct proof for the nonintegrability problem of Truesdell’s hypoelastic rate equation with classical stress rates. This problem has been first treated successfully by Simo and Pister in 1984 using Bernstein’s integrability conditions. However, such treatment needs to cope with a coupled system of nonlinear partial differential equations in Cauchy stress. Here, a different idea is used. It is noted that every integrable hypoelastic equation is just an equivalent rate form of an elastic equation and hence should produce no residual deformations under every possible stress cycle. Accordingly, a hypoelastic model with a stress rate has to be non‐integrable, whenever a stress cycle can be found under which this model generates residual deformation. According to this idea of reductio ad absurdum, a well‐designed stress cycle is introduced and the corresponding residual deformations are calculated. Unlike the treatment of Bernstein’s integrability conditions, it may be a simple and straightforward matter to calculate the final deformations for a given stress cycle. This has been done in this study for several well‐known stress rates.

Details

Multidiscipline Modeling in Materials and Structures, vol. 5 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 1 April 1993

Y. TSUI and Y.M. CHENG

Large strain model can be formulated in terms of the Lagrangian or the Eulerian frame. In this paper, the Eulerian type large strain models are studied. Numerical examples on the…

Abstract

Large strain model can be formulated in terms of the Lagrangian or the Eulerian frame. In this paper, the Eulerian type large strain models are studied. Numerical examples on the Lagrangian and Eulerian types large strain models are investigated and compared. It is found that the differences in the choice of large strain model under large strain and rotation problems are noticeable but not significant if small load step is used for analysis. Furthermore, we have also found that unsymmetrical formulation instead of symmetrical formulation should be adopted for Eulerian type large strain models.

Details

Engineering Computations, vol. 10 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 February 1999

A.F. Marcon, E. Bittencourt and G.J. Creus

Discusses an alternative formulation for the incremental determination of stresses in strain measures that can be used to replace the stress rates currently employed. The…

Abstract

Discusses an alternative formulation for the incremental determination of stresses in strain measures that can be used to replace the stress rates currently employed. The formulation is based on Doyle‐Hill generalized definition of strain, the corresponding conjugate stresses and an isotropic hyperelastic constitutive equation. When used to analyze the simple shear deformation, the proposed formulation avoids the pathologies usually observed (oscillations, pressure build up, path dependence). The origin and importance of these pathologies is then discussed in relation to different materials behavior. It is shown that the incremental procedure used together with the logarithmic definition of strain is the most convenient, but that other approximations may be used in well defined particular situations. The numerical algorithms proposed are detailed in an Appendix.

Details

Engineering Computations, vol. 16 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 4 April 2008

Erwin Stein and Gautam Sagar

The purpose of this paper is to examine quadratic convergence of finite element analysis for hyperelastic material at finite strains via Abaqus‐UMAT as well as classification of…

2655

Abstract

Purpose

The purpose of this paper is to examine quadratic convergence of finite element analysis for hyperelastic material at finite strains via Abaqus‐UMAT as well as classification of the rates of convergence for iterative solutions in regular cases.

Design/methodology/approach

Different formulations for stiffness – Hessian form of the free energy functionals – are systematically given for getting the rate‐independent analytical tangent and the numerical tangent as well as rate‐dependent tangents using the objective Jaumann rate of Kirchoff stress tensor as used in Abaqus. The convergence rates for available element types in Abaqus are computed and compared for simple but significant nonlinear elastic problems, such as using the 8‐node linear brick (B‐bar) element – also with hybrid pressure formulation and with incompatible modes – further the 20‐node quadratic brick element with corresponding modifications as well as the 6‐node linear triangular prism element and 4‐node linear tetrahedral element with modifications.

Findings

By using the Jaumann rate of Kirchoff stress tensor for both, rate dependent and rate independent problems, quadratic or nearly quadratic convergence is achieved for most of the used elements using Abaqus‐UMAT interface. But in case of using rate independent analytical tangent for rate independent problems, even convergence at all is not assured for all elements and the considered problems.

Originality/value

First time the convergence properties of 3D finite elements available in Abaqus sre systematically treated for elastic material at finite strain via Abaqus‐UMAT.

Details

Engineering Computations, vol. 25 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 3 August 2015

Mark Messner, Armand Beaudoin and Robert Dodds

The purpose of this paper is to describe several novel techniques for implementing a crystal plasticity (CP) material model in a large deformation, implicit finite element…

Abstract

Purpose

The purpose of this paper is to describe several novel techniques for implementing a crystal plasticity (CP) material model in a large deformation, implicit finite element framework.

Design/methodology/approach

Starting from the key kinematic assumptions of CP, the presentation develops the necessary CP correction terms to several common objective stress rates and the consistent linearization of the stress update algorithm. Connections to models for slip system hardening are isolated from these processes.

Findings

A kinematically consistent implementation is found to require a correction to the stress update to include plastic vorticity developed by slip deformation in polycrystals. A simpler, more direct form for the algorithmic tangent is described. Several numerical examples demonstrate the capabilities and computational efficiency of the formulation.

Research limitations/implications

The implementation assumes isotropic slip system hardening. With simple modifications, the described approach extends readily to anisotropic coupled or uncoupled hardening functions.

Practical implications

The modular formulation and implementation support streamlined development of new models for slip system hardening without modifications of the stress update and algorithmic tangent computations. This implementation is available in the open-source code WARP3D.

Originality/value

In the process of developing the CP formulation, this work realized the need for corrections to the Green-Naghdi and Jaumann objective stress rates to account properly for non-zero plastic vorticity. The paper describes fully the consistent linearization of the stress update algorithm and details a new scheme to implement the model with improved efficiency.

Details

Engineering Computations, vol. 32 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 May 2003

A.R. Khoei, A. Bakhshiani and M. Mofid

In this paper, a new rate type endochronic constitutive model is introduced to describe deformations in the finite strain range. A new material dependent objective rate of Cauchy…

Abstract

In this paper, a new rate type endochronic constitutive model is introduced to describe deformations in the finite strain range. A new material dependent objective rate of Cauchy stress is suggested based on the general form of spin tensors, defining objective stress rates. The endochronic constitutive equations are extended using the concept of corotational stress rates and additive decomposition of deformation rate. The constitutive relations are specialized for thin‐walled tubes under torsion and a procedure for solving the ordinary differential equations for cases of simple and pure torsion is developed. The axial effects for various materials, subjected to simple and pure torsion, are simulated and compared with experimental data. The results clearly indicate that the new combined rate endochronic model can be effectively used to describe the behavior of material in the finite strain range.

Details

Engineering Computations, vol. 20 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 February 1997

Sanjay Govindjee

Analyses several algorithms for the integration of the Jaumann stress rate. Places emphasis on accuracy and stability of standard algorithms available in commercial and government…

Abstract

Analyses several algorithms for the integration of the Jaumann stress rate. Places emphasis on accuracy and stability of standard algorithms available in commercial and government finite element codes in addition to several other proposals available in the literature. The analysis is primarily concerned with spinning bodies and reveals that a commonly used algorithm is unconditionally unstable and only first‐order objective in the presence of rotations. Other proposals are shown to have better accuracy and stability properties. Finally, shows by example that even a consistent and unconditionally stable integration of hypoelastic constitution does not necessarily yield globally stable finite element simulations.

Details

Engineering Computations, vol. 14 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 April 1984

J.P. Halleux and F. Casadei

A finite element procedure is presented for refined transient analysis of two‐dimensional (plane or axisymmetric) non‐linear structures involving arbitrarily large displacements…

Abstract

A finite element procedure is presented for refined transient analysis of two‐dimensional (plane or axisymmetric) non‐linear structures involving arbitrarily large displacements, rotations and strains. The finite element model is based on the biquadratic nine‐node element of the Lagrange family. The relevant points pertaining to the equations of motion and their integration and to the spatial description, including geometrical and material non‐linearities, are considered. In particular, stress and strain rates are discussed. Finally, significant numerical applications show the effectiveness of the proposed method.

Details

Engineering Computations, vol. 1 no. 4
Type: Research Article
ISSN: 0264-4401

Article
Publication date: 16 November 2010

Robert Hamilton, Donald MacKenzie and Hongjun Li

The friction stir welding (FSW) process comprises several highly coupled (and non‐linear) physical phenomena: large plastic deformation, material flow transportation, mechanical…

3370

Abstract

Purpose

The friction stir welding (FSW) process comprises several highly coupled (and non‐linear) physical phenomena: large plastic deformation, material flow transportation, mechanical stirring of the tool, tool‐workpiece surface interaction, dynamic structural evolution, heat generation from friction and plastic deformation. This paper aims to present an advanced finite element (FE) model encapsulating this complex behaviour and various aspects associated with the FE model such as contact modelling, material model and meshing techniques are to be discussed in detail.

Design/methodology/approach

The numerical model is continuum solid mechanics‐based, fully thermo‐mechanically coupled and has successfully simulated the FSW process including plunging, dwelling and welding stages.

Findings

The development of several field variables are quantified by the model: temperature, stress, strain. Material movement is visualized by defining tracer particles at the locations of interest. The numerically computed material flow patterns are in very good agreement with the general findings from experiments.

Originality/value

The model is, to the best of the authors' knowledge, the most advanced simulation of FSW published in the literature.

Details

Engineering Computations, vol. 27 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 October 2006

Yabo Guan, Farhang Pourboghrat and Woong‐Ryeol Yu

The purpose of this paper is to provide an axisymmetric model of tube hydroforming using a Fourier Series based finite element method.

1604

Abstract

Purpose

The purpose of this paper is to provide an axisymmetric model of tube hydroforming using a Fourier Series based finite element method.

Design/methodology/approach

Fourier series interpolation function, which considerably reduces the size of the global stiffness matrix and the number of variables, is employed to approximate displacements. The material of the tube is assumed to be elastic‐plastic and to satisfy the plasticity model that takes into account the rate independent work hardening and normal anisotropy. Numerical solution obtained from an updated Lagrangian formulation of the general shell theory is employed. The axial displacement stroke (a.k.a. axial feed) during tube hydroforming is incorporated using Lagrange multipliers. Contact constraints and boundary friction condition are introduced into the formulation based on the penalty function, which imposes the constraints directly into the tangent stiffness matrix. A forming limit curve based on shear instability and experimental measurements are used as fracture criteria.

Findings

The results obtained from this new formulation are compared against the nonlinear finite element code ABAQUS and experimental measurements for isotropic and transversely anisotropic tube materials. The hoop and axial strains predicted with AXHD code compared excellently with those from ABAQUS FEM code using plane stress axisymmetric (SAX1) and four‐node shell (S4R) elements. However, in the case of aluminum, the numerically predicted maximum hoop strain underestimated the actual hoop strain measured from the tube bulging experiment.

Practical implications

The axisymmetric hydroforming program (AXHD) developed in this work is very efficient in simulating the free‐forming stage of the tube hydroforming process under simultaneous action of internal pressurization and displacement stroke.

Originality/value

Although Fourier Series based finite element method has been used in metal forming, the extended application presented in this paper is novel in the finite element analysis of tube hydroforming.

Details

Engineering Computations, vol. 23 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of 34