Search results

1 – 2 of 2
Article
Publication date: 24 January 2024

Nirmal Singh, Harmanjit Singh Banga, Jaswinder Singh and Rajnish Sharma

This paper aims to prompt ideas amongst readers (especially librarians) about how they can become active partners in knowledge dissemination amongst concerned user groups by…

Abstract

Purpose

This paper aims to prompt ideas amongst readers (especially librarians) about how they can become active partners in knowledge dissemination amongst concerned user groups by implementing 3D printing technology under the “Makerspace.”

Design/methodology/approach

The paper provides a brief account of various tools and techniques used by veterinary and animal sciences institutions for information dissemination amongst the stakeholders and associated challenges with a focus on the use of 3D printing technology to overcome the bottlenecks. An overview of the 3D printing technology has been provided following the instances of use of this novel technology in veterinary and animal sciences. An initiative of the University Library, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, to harness the potential of this technology in disseminating information amongst livestock stakeholders has been discussed.

Findings

3D printing has the potential to enhance learning in veterinary and animal sciences by providing hands-on exposure to various anatomical structures, such as bones, organs and blood vessels, without the need for a cadaver. This approach enhances students’ spatial understanding and helps them better understand anatomical concepts. Libraries can enhance their visibility and can contribute actively to knowledge dissemination beyond traditional library services.

Originality/value

The ideas about how to harness the potential of 3D printing in knowledge dissemination amongst livestock sector stakeholders have been elaborated. This promotes creativity amongst librarians enabling them to think how they can engage in knowledge dissemination thinking out of the box.

Details

Library Hi Tech News, vol. 41 no. 2
Type: Research Article
ISSN: 0741-9058

Keywords

Article
Publication date: 15 February 2024

Saliq Shamim Shah, Daljeet Singh, Jaswinder Singh Saini and Naveen Garg

This paper aims to study the design and characterization of a 3D printed tetrakaidecahedron cell-based acoustic metamaterial. At present, the mitigation of low-frequency noise…

Abstract

Purpose

This paper aims to study the design and characterization of a 3D printed tetrakaidecahedron cell-based acoustic metamaterial. At present, the mitigation of low-frequency noise involves the utilization of spatially demanding materials for the absorption of sound. These materials lack the ability for targeted frequency control adjustments. Hence, there is a requirement for an approach that can effectively manage low-frequency noise using lightweight and durable materials.

Design/methodology/approach

The CAD model was created in SolidWorks and was manufactured using the Digital Light Processing (DLP) 3D printing technique. Experimental study and numerical simulations examined the metamaterial’s acoustic absorption. An impedance tube with two microphones was used to determine the absorption coefficient of the metamaterial. The simulations were run in a thermoviscous module.

Findings

The testing of acoustic samples highlighted the effects of geometric parameters on acoustic performance. Increment of the strut length by 0.4 mm led to a shift in response to a lower frequency by 500 Hz. Peak absorption rose from 0.461 to 0.690 as the strut diameter was increased from 0.6 to 1.0 mm. Increasing the number of cells from 8 to 20 increased the absorption coefficient and lowered the response frequency.

Originality/value

DLP 3D printing technique was used to successfully manufacture tetrakaidecahedron-based acoustic metamaterial samples. A novel study on the effects of geometric parameters of tetrakaidecahedron cell-based acoustic metamaterial on the acoustic absorption coefficient was conducted, which seemed to be missing in the literature.

Access

Year

Last 3 months (2)

Content type

1 – 2 of 2