Search results

1 – 10 of over 5000
Article
Publication date: 1 January 1986

J.I. Ramos

A mathematical model has been developed to study incompressible, isothermal, turbulent, confined, swirling flows. The model solves the conservation equations of mass, momentum…

Abstract

A mathematical model has been developed to study incompressible, isothermal, turbulent, confined, swirling flows. The model solves the conservation equations of mass, momentum, and two additional equations for the turbulent kinetic energy and the rate of dissipation of turbulent kinetic energy. The numerical predictions show a recirculation zone in the form of a one‐celled toroidal vortex at the combustor centreline. High levels of turbulence characterize the recirculation zone. The length, diameter and maximum velocity of the recirculation zone first decrease and then increase as the magnitude of the outer swirl number is first decreased from counter‐swirl to zero and then increased to co‐swirl flow conditions. Counter‐swirl produces steeper velocity gradients at the inter‐jet shear layer and promotes faster mixing than co‐swirl. The numerical results also indicate that the mass of the recirculation zone first decreases and then increases as the outer swirl number is first decreased from counter‐swirl to zero and then increased to co‐swirl conditions. The diameter, maximum velocity and mass of the recirculation zone are monotonically increasing functions of the inner jet swirl number. The recirculation zone length, diameter and mass are almost independent of the Reynolds number and outer‐to‐inner jet axial velocity ratio.

Details

Engineering Computations, vol. 3 no. 1
Type: Research Article
ISSN: 0264-4401

Article
Publication date: 17 October 2019

J.I. Ramos

The purpose of this paper is to develop a new transversal method of lines for one-dimensional reactiondiffusion equations that is conservative and provides piecewise–analytical…

Abstract

Purpose

The purpose of this paper is to develop a new transversal method of lines for one-dimensional reactiondiffusion equations that is conservative and provides piecewise–analytical solutions in space, analyze its truncation errors and linear stability, compare it with other finite-difference discretizations and assess the effects of the nonlinear diffusion coefficients, reaction rate terms and initial conditions on wave propagation and merging.

Design/methodology/approach

A conservative, transversal method of lines based on the discretization of time and piecewise analytical integration of the resulting two-point boundary-value problems subject to the continuity of the dependent variables and their fluxes at the control-volume boundaries, is presented. The method provides three-point finite difference expressions for the nodal values and continuous solutions in space, and its accuracy has been determined first analytically and then assessed in numerical experiments of reaction-diffusion problems, which exhibit interior and/or boundary layers.

Findings

The transversal method of lines presented here results in three-point finite difference equations for the nodal values, treats the diffusion terms implicitly and is unconditionally stable if the reaction terms are treated implicitly. The method is very accurate for problems with the interior and/or boundary layers. For a system of two nonlinearly-coupled, one-dimensional reactiondiffusion equations, the formation, propagation and merging of reactive fronts have been found to be strong function of the diffusion coefficients and reaction rates. For asymmetric ignition, it has been found that, after front merging, the temperature and concentration profiles are almost independent of the ignition conditions.

Originality/value

A new, conservative, transversal method of lines that treats the diffusion terms implicitly and provides piecewise exponential solutions in space without the need for interpolation is presented and applied to someone.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 11
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 February 1984

J.I. Ramos

A mathematical model has been developed to study turbulent, confined, swirling flows under reacting non‐premixed conditions. The model solves the conservation equations of mass…

Abstract

A mathematical model has been developed to study turbulent, confined, swirling flows under reacting non‐premixed conditions. The model solves the conservation equations of mass, momentum, energy, species, and two additional equations for the turbulent kinetic energy and the turbulent length scale. Combustion has been modelled by means of a one‐step overall chemical reaction. The numerical predictions based on the eddy‐break‐up model of turbulent combustion show a recirculation zone in the form of a one‐celled toroidal vortex at the combustor centreline. High levels of turbulence characterize the recirculation zone, whose diameter and velocity first decrease and then increase as the magnitude of the outer swirl number is first decreased from counter‐swirl to zero and then increased to co‐swirl flow conditions. Counter‐swirl produces steeper velocity gradients at the inter‐jet shear layer, promotes faster mixing and yields better combustion efficiency than co‐swirl. The numerical results are compared with those obtained under non‐reacting conditions in order to assess the influence of the heat release on the size of the recirculation zone.

Details

Engineering Computations, vol. 1 no. 2
Type: Research Article
ISSN: 0264-4401

Article
Publication date: 1 January 1992

J.I. RAMOS

A domain‐adaptive technique which maps the unknown, time‐dependent, curvilinear geometry of annular liquid jets into a unit square is used to determine the steady state mass…

Abstract

A domain‐adaptive technique which maps the unknown, time‐dependent, curvilinear geometry of annular liquid jets into a unit square is used to determine the steady state mass absorption rate and the collapse of annular liquid jets as functions of the Froude, Peclet and Weber numbers, nozzle exit angle, initial pressure and temperature of the gas enclosed by the liquid, gas concentration at the nozzle exit, ratio of solubilities at the inner and outer interfaces of the annular jet, pressure of the gas surrounding the liquid, and annular jet's thickness‐to‐radius ratio at the nozzle exit. The domain‐adaptive technique yields a system of non‐linearly coupled integrodifferential equations for the fluid dynamics of and the gas concentration in the annular jet, and an ordinary differential equation for the time‐dependent convergence length. An iterative, block‐bidiagonal technique is used to solve the fluid dynamics equations, while the gas concentration equation is solved by means of a line Gauss‐Seidel method. It is shown that the jet's collapse rate increases as the Weber number, nozzle exit angle, temperature of the gas enclosed by the annular jet, and pressure of the gas surrounding the jet are increased, but decreases as the Froude and Peclet numbers and annular jet's thickness‐to‐radius ratio at the nozzle exit are increased. It is also shown that, if the product of the inner‐to‐outer surface solubility ratio and the initial pressure ratio is smaller than one, mass is absorbed at the outer surface of the annular jet, and the mass and volume of the gas enclosed by the jet increase with time.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 2 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 7 April 2020

J.I. Ramos and Carmen María García López

The purpose of this paper is to determine both analytically and numerically the solution to a new one-dimensional equation for the propagation of small-amplitude waves in shallow…

Abstract

Purpose

The purpose of this paper is to determine both analytically and numerically the solution to a new one-dimensional equation for the propagation of small-amplitude waves in shallow waters that accounts for linear and nonlinear drift, diffusive attenuation, viscosity and dispersion, its dependence on the initial conditions, and its linear stability.

Design/methodology/approach

An implicit, finite difference method valid for both parabolic and second-order hyperbolic equations has been used to solve the equation in a truncated domain for five different initial conditions, a nil initial first-order time derivative and relaxation times linearly proportional to the viscosity coefficient.

Findings

A fast transition that depends on the coefficient of the linear drift, the diffusive attenuation and the power of the nonlinear drift are found for initial conditions corresponding to the exact solution of the generalized regularized long-wave equation. For initial Gaussian, rectangular and triangular conditions, the wave’s amplitude and speed increase as both the amplitude and the width of these conditions increase and decrease, respectively; wide initial conditions evolve into a narrow leading traveling wave of the pulse type and a train of slower oscillatory secondary ones. For the same initial mass and amplitude, rectangular initial conditions result in larger amplitude and velocity waves of the pulse type than Gaussian and triangular ones. The wave’s kinetic, potential and stretching energies undergo large changes in an initial layer whose thickness is on the order of the diffusive attenuation coefficient.

Originality/value

A new, one-dimensional equation for the propagation of small-amplitude waves in shallow waters is proposed and studied analytically and numerically. The equation may also be used to study the displacement of porous media subject to seismic effects, the dispersion of sound in tunnels, the attenuation of sound because of viscosity and/or heat and mass diffusion, the dynamics of second-order, viscoelastic fluids, etc., by appropriate choices of the parameters that appear in it.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 11
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 21 February 2020

J.I. Ramos

The purpose of this study is to develop a new method of lines for one-dimensional (1D) advection-reaction-diffusion (ADR) equations that is conservative and provides piecewise…

Abstract

Purpose

The purpose of this study is to develop a new method of lines for one-dimensional (1D) advection-reaction-diffusion (ADR) equations that is conservative and provides piecewise analytical solutions in space, compare it with other finite-difference discretizations and assess the effects of advection and reaction on both 1D and two-dimensional (2D) problems.

Design/methodology/approach

A conservative method of lines based on the piecewise analytical integration of the two-point boundary value problems that result from the local solution of the advection-diffusion operator subject to the continuity of the dependent variables and their fluxes at the control volume boundaries is presented. The method results in nonlinear first-order, ordinary differential equations in time for the nodal values of the dependent variables at three adjacent grid points and triangular mass and source matrices, reduces to the well-known exponentially fitted techniques for constant coefficients and equally spaced grids and provides continuous solutions in space.

Findings

The conservative method of lines presented here results in three-point finite difference equations for the nodal values, implicitly treats the advection and diffusion terms and is unconditionally stable if the reaction terms are implicitly treated. The method is shown to be more accurate than other three-point, exponentially fitted methods for nonlinear problems with interior and/or boundary layers and/or source/reaction terms. The effects of linear advection in 1D reacting flow problems indicates that the wave front steepens as it approaches the downstream boundary, whereas its back corresponds to a translation of the initial conditions; for nonlinear advection, the wave front exhibits steepening but the wave back shows a linear dependence on space. For a system of two nonlinearly coupled, 2D ADR equations, it is shown that a counter-clockwise rotating vortical field stretches the spiral whose tip drifts about the center of the domain, whereas a clock-wise rotating one compresses the wave and thickens its arms.

Originality/value

A new, conservative method of lines that implicitly treats the advection and diffusion terms and provides piecewise-exponential solutions in space is presented and applied to some 1D and 2D advection reactions.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 11
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 3 May 2016

J I Ramos

The purpose of this paper is to both determine the effects of the nonlinearity on the wave dynamics and assess the temporal and spatial accuracy of five finite difference methods…

Abstract

Purpose

The purpose of this paper is to both determine the effects of the nonlinearity on the wave dynamics and assess the temporal and spatial accuracy of five finite difference methods for the solution of the inviscid generalized regularized long-wave (GRLW) equation subject to initial Gaussian conditions.

Design/methodology/approach

Two implicit second- and fourth-order accurate finite difference methods and three Runge-Kutta procedures are introduced. The methods employ a new dependent variable which contains the wave amplitude and its second-order spatial derivative. Numerical experiments are reported for several temporal and spatial step sizes in order to assess their accuracy and the preservation of the first two invariants of the inviscid GRLW equation as functions of the spatial and temporal orders of accuracy, and thus determine the conditions under which grid-independent results are obtained.

Findings

It has been found that the steepening of the wave increase as the nonlinearity exponent is increased and that the accuracy of the fourth-order Runge-Kutta method is comparable to that of a second-order implicit procedure for time steps smaller than 100th, and that only the fourth-order compact method is almost grid-independent if the time step is on the order of 1,000th and more than 5,000 grid points are used, because of the initial steepening of the initial profile, wave breakup and solitary wave propagation.

Originality/value

This is the first study where an accuracy assessment of wave breakup of the inviscid GRLW equation subject to initial Gaussian conditions is reported.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 26 no. 3/4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 6 November 2017

J.I. Ramos

The purpose of this paper is to develop a new finite-volume method of lines for one-dimensional reaction-diffusion equations that provides piece-wise analytical solutions in space…

Abstract

Purpose

The purpose of this paper is to develop a new finite-volume method of lines for one-dimensional reaction-diffusion equations that provides piece-wise analytical solutions in space and is conservative, compare it with other finite-difference discretizations and assess the effects of the nonlinear diffusion coefficient on wave propagation.

Design/methodology/approach

A conservative, finite-volume method of lines based on piecewise integration of the diffusion operator that provides a globally continuous approximate solution and is second-order accurate is presented. Numerical experiments that assess the accuracy of the method and the time required to achieve steady state, and the effects of the nonlinear diffusion coefficients on wave propagation and boundary values are reported.

Findings

The finite-volume method of lines presented here involves the nodal values and their first-order time derivatives at three adjacent grid points, is linearly stable for a first-order accurate Euler’s backward discretization of the time derivative and has a smaller amplification factor than a second-order accurate three-point centered discretization of the second-order spatial derivative. For a system of two nonlinearly-coupled, one-dimensional reaction-diffusion equations, the amplitude, speed and separation of wave fronts are found to be strong functions of the dependence of the nonlinear diffusion coefficients on the concentration and temperature.

Originality/value

A new finite-volume method of lines for one-dimensional reaction-diffusion equations based on piecewise analytical integration of the diffusion operator and the continuity of the dependent variables and their fluxes at the cell boundaries is presented. The method may be used to study heat and mass transfer in layered media.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 11
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 27 November 2023

J.I. Ramos and Carmen María García López

The purpose of this paper is to analyze numerically the blowup in finite time of the solutions to a one-dimensional, bidirectional, nonlinear wave model equation for the…

241

Abstract

Purpose

The purpose of this paper is to analyze numerically the blowup in finite time of the solutions to a one-dimensional, bidirectional, nonlinear wave model equation for the propagation of small-amplitude waves in shallow water, as a function of the relaxation time, linear and nonlinear drift, power of the nonlinear advection flux, viscosity coefficient, viscous attenuation, and amplitude, smoothness and width of three types of initial conditions.

Design/methodology/approach

An implicit, first-order accurate in time, finite difference method valid for semipositive relaxation times has been used to solve the equation in a truncated domain for three different initial conditions, a first-order time derivative initially equal to zero and several constant wave speeds.

Findings

The numerical experiments show a very rapid transient from the initial conditions to the formation of a leading propagating wave, whose duration depends strongly on the shape, amplitude and width of the initial data as well as on the coefficients of the bidirectional equation. The blowup times for the triangular conditions have been found to be larger than those for the Gaussian ones, and the latter are larger than those for rectangular conditions, thus indicating that the blowup time decreases as the smoothness of the initial conditions decreases. The blowup time has also been found to decrease as the relaxation time, degree of nonlinearity, linear drift coefficient and amplitude of the initial conditions are increased, and as the width of the initial condition is decreased, but it increases as the viscosity coefficient is increased. No blowup has been observed for relaxation times smaller than one-hundredth, viscosity coefficients larger than ten-thousandths, quadratic and cubic nonlinearities, and initial Gaussian, triangular and rectangular conditions of unity amplitude.

Originality/value

The blowup of a one-dimensional, bidirectional equation that is a model for the propagation of waves in shallow water, longitudinal displacement in homogeneous viscoelastic bars, nerve conduction, nonlinear acoustics and heat transfer in very small devices and/or at very high transfer rates has been determined numerically as a function of the linear and nonlinear drift coefficients, power of the nonlinear drift, viscosity coefficient, viscous attenuation, and amplitude, smoothness and width of the initial conditions for nonzero relaxation times.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 May 1996

J.I. Ramos

This paper analyses numerically the effects of sinusoidal g—jitter onthe fluid dynamics of, and mass transfer in, annular liquid jets. It is shownthat the pressure and volume of…

Abstract

This paper analyses numerically the effects of sinusoidal g—jitter on the fluid dynamics of, and mass transfer in, annular liquid jets. It is shown that the pressure and volume of the gases enclosed by the jet, the gas concentration at the jet’s inner interface, and the mass absorption rates at the jet’s inner and outer interfaces are sinusoidal functions of time which have the same frequency as that of the g—jitter. The amplitude of these oscillations increases and decreases, respectively, as the amplitude and frequency, respectively, of the g—jitter is increased. The pressure coefficient and the gas concentration at the jet’s inner interface are in phase with the applied g—jitter and the amplitude of their oscillations increases almost linearly with the amplitude of the g—jitter. The mass absorption rates at the jet’s inner and outer interfaces exhibit a phase lag with respect to the g—jitter.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 6 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of over 5000