Search results

1 – 10 of over 6000
Article
Publication date: 1 February 2003

Jayantha Pasdunkorale A. and Ian W. Turner

An existing two‐dimensional finite volume technique is modified by introducing a correction term to increase the accuracy of the method to second order. It is well known that the…

Abstract

An existing two‐dimensional finite volume technique is modified by introducing a correction term to increase the accuracy of the method to second order. It is well known that the accuracy of the finite volume method strongly depends on the order of the approximation of the flux term at the control volume (CV) faces. For highly orthotropic and anisotropic media, first order approximations produce inaccurate simulation results, which motivates the need for better estimates of the flux expression. In this article, a new approach to approximate the flux term at the CV face is presented. The discretisation involves a decomposition of the flux and an improved least squares approximation technique to calculate the derivatives of the dependent function on the CV faces for estimating both the cross diffusion term and a correction for the primary flux term. The advantage of this method is that any arbitrary unstructured mesh can be used to implement the technique without considering the shapes of the mesh elements. It was found that the numerical results well matched the available exact solution for a representative transport equation in highly orthotropic media and the benchmark solutions obtained on a fine mesh for anisotropic media. Previously proposed CV techniques are compared with the new method to highlight its accuracy for different unstructured meshes.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 13 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 December 2001

Jaroslav Mackerle

Gives a bibliographical review of the finite element meshing and remeshing from the theoretical as well as practical points of view. Topics such as adaptive techniques for meshing…

1896

Abstract

Gives a bibliographical review of the finite element meshing and remeshing from the theoretical as well as practical points of view. Topics such as adaptive techniques for meshing and remeshing, parallel processing in the finite element modelling, etc. are also included. The bibliography at the end of this paper contains 1,727 references to papers, conference proceedings and theses/dissertations dealing with presented subjects that were published between 1990 and 2001.

Details

Engineering Computations, vol. 18 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 February 2001

Suvranu De and Klaus‐Jürgen Bathe

Computational efficiency and reliability are clearly the most important requirements for the success of a meshless numerical technique. While the basic ideas of meshless techniques

Abstract

Computational efficiency and reliability are clearly the most important requirements for the success of a meshless numerical technique. While the basic ideas of meshless techniques are simple and well understood, an effective meshless method is very difficult to develop. The efficiency depends on the proper choice of the interpolation scheme, numerical integration procedures and techniques of imposing the boundary conditions. These issues in the context of the method of finite spheres are discussed.

Details

Engineering Computations, vol. 18 no. 1/2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 November 1999

Francesco Casalini and Andrea Dadone

The viscous finite volume lambda formulation is presented. The suggested technique is apt to compute viscous flows with heat fluxes. The inviscid terms are evaluated by means of…

Abstract

The viscous finite volume lambda formulation is presented. The suggested technique is apt to compute viscous flows with heat fluxes. The inviscid terms are evaluated by means of the non‐conservative, very accurate upwind methodology, known as the finite volume lambda formulation. The diffusive terms, on the contrary, are approximated by a central scheme. Both methods are characterized by a nominal second order accuracy in space. Efficiency is enhanced by means of a multigrid technique which directly combines each grid level with each stage of an explicit multistage time integration technique. A laminar viscous flow about a NACA 0012 airfoil and a turbulent one about a RAE 2822 airfoil have been computed as well as the two‐ and three‐dimensional turbulent flows inside the Stanitz elbow. The computed numerical results are in very good agreement with well assessed published numerical or experimental results. The suggested multigrid technique allows significant work reductions for laminar as well as for turbulent flow computations.

Details

Engineering Computations, vol. 16 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 September 2000

Malika Remaki

A new finite volume scheme to solve Maxwell’s equations is presented. The approach is based on a leapfrog time scheme and a centered flux formula. This method is well suited for…

Abstract

A new finite volume scheme to solve Maxwell’s equations is presented. The approach is based on a leapfrog time scheme and a centered flux formula. This method is well suited for handling complex geometries, and therefore we can use unstructured grids. It is also able to capture the discontinuities of the electromagnetic fields through different media, without producing spurious oscillations. Owing to these properties, we can treat difficult problems, such a computing a scattered wave across complex objects. An analysis of the scheme is presented and numerical experiments are performed.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 19 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 20 February 2007

D. McBride, N. Croft and M. Cross

To improve flow solutions on meshes with cells/elements which are distorted/ non‐orthogonal.

Abstract

Purpose

To improve flow solutions on meshes with cells/elements which are distorted/ non‐orthogonal.

Design/methodology/approach

The cell‐centred finite volume (FV) discretisation method is well established in computational fluid dynamics analysis for modelling physical processes and is typically employed in most commercial tools. This method is computationally efficient, but its accuracy and convergence behaviour may be compromised on meshes which feature cells with non‐orthogonal shapes, as can occur when modelling very complex geometries. A co‐located vertex‐based (VB) discretisation and partially staggered, VB/cell‐centred (CC), discretisation of the hydrodynamic variables are investigated and compared with purely CC solutions on a number of increasingly distorted meshes.

Findings

The co‐located CC method fails to produce solutions on all the distorted meshes investigated. Although more expensive computationally, the co‐located VB simulation results always converge whilst its accuracy appears to grace‐fully degrade on all meshes, no matter how extreme the element distortion. Although the hybrid, partially staggered, formulations also allow solutions on all the meshes, the results have larger errors than the co‐located vertex based method and are as expensive computationally; thus, offering no obvious advantage.

Research limitations/implications

Employing the ability of the VB technique to resolve the flow field on a distorted mesh may well enable solutions to be obtained on complex meshes where established CC approaches fail

Originality/value

This paper investigates a range of cell centred, vertex based and hybrid approaches to FV discretisation of the NS hydrodynamic variables, in an effort characterize their capability at generating solutions on meshes with distorted or non‐orthogonal cells/elements.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 17 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 June 1996

G.K. Despotis and S. Tsangaris

The extrudate swell phenomenon is analysed by solving, simultaneously,the Navier‐Stokes equations along with the continuity equation bymeans of a finite volume method. In this…

Abstract

The extrudate swell phenomenon is analysed by solving, simultaneously, the Navier‐Stokes equations along with the continuity equation by means of a finite volume method. In this work, the planar jet flows of incompressible viscous Newtonian and power‐law fluids for Reynolds numbers as high as 75 are simulated. The method uses the velocity components and pressure as the primitive variables and employs an unstructured triangular grid and triangular or polygonal control volume for each separate variable. The numerical results show good agreement with previously reported experimental and numerical results. Shear thickening results in an increase in swelling ratio, while the introduction of surface tension results in a describes in swelling ratio.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 6 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 6 November 2017

J.I. Ramos

The purpose of this paper is to develop a new finite-volume method of lines for one-dimensional reaction-diffusion equations that provides piece-wise analytical solutions in space…

Abstract

Purpose

The purpose of this paper is to develop a new finite-volume method of lines for one-dimensional reaction-diffusion equations that provides piece-wise analytical solutions in space and is conservative, compare it with other finite-difference discretizations and assess the effects of the nonlinear diffusion coefficient on wave propagation.

Design/methodology/approach

A conservative, finite-volume method of lines based on piecewise integration of the diffusion operator that provides a globally continuous approximate solution and is second-order accurate is presented. Numerical experiments that assess the accuracy of the method and the time required to achieve steady state, and the effects of the nonlinear diffusion coefficients on wave propagation and boundary values are reported.

Findings

The finite-volume method of lines presented here involves the nodal values and their first-order time derivatives at three adjacent grid points, is linearly stable for a first-order accurate Euler’s backward discretization of the time derivative and has a smaller amplification factor than a second-order accurate three-point centered discretization of the second-order spatial derivative. For a system of two nonlinearly-coupled, one-dimensional reaction-diffusion equations, the amplitude, speed and separation of wave fronts are found to be strong functions of the dependence of the nonlinear diffusion coefficients on the concentration and temperature.

Originality/value

A new finite-volume method of lines for one-dimensional reaction-diffusion equations based on piecewise analytical integration of the diffusion operator and the continuity of the dependent variables and their fluxes at the cell boundaries is presented. The method may be used to study heat and mass transfer in layered media.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 11
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 2 May 2017

Junjie Liang, Wan Luo, Zhigao Huang, Huamin Zhou, Yun Zhang, Yi Zhang and Yang Fu

The purpose of this paper is to develop a finite volume approach for the simulation of three-dimensional two-phase (polymer melt and air) flow in plastic injection molding which…

Abstract

Purpose

The purpose of this paper is to develop a finite volume approach for the simulation of three-dimensional two-phase (polymer melt and air) flow in plastic injection molding which is capable of robustly handling the mesh non-orthogonality and the discontinuities in fluid properties.

Design/methodology/approach

The presented numerical method is based on a cell-centered unstructured finite volume discretization with a volume-of-fluid technique for interface capturing. The over-relaxed approach is adopted to handle the non-orthogonality involved in the discretization of the face normal derivatives to enhance the robustness of the solutions on non-orthogonal meshes. A novel interpolation method for the face pressure is derived to address the numerical stability issues resulting from the density and viscosity discontinuities at the melt–air interface. Various test cases are conducted to evaluate the proposed method.

Findings

The presented method was shown to be satisfactorily accurate by comparing simulations with analytical and experimental results. Besides, the effectiveness of the proposed face pressure interpolation method was verified by numerical examples of a two-phase flow problem with various density and viscosity ratios. The proposed method was also successfully applied to the simulation of a practical filling case.

Originality/value

The proposed finite volume approach is more tolerant of non-orthogonal meshes and the discontinuities in fluid properties for two-phase flow simulation; therefore, it is valuable for engineers in engineering computations.

Details

Engineering Computations, vol. 34 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 19 June 2007

Marcela Cruchaga and Diego Celentano

This work is devoted to the experimental analysis, numerical modelling and validation of ice melting processes.

Abstract

Purpose

This work is devoted to the experimental analysis, numerical modelling and validation of ice melting processes.

Design/methodology/approach

The thermally coupled incompressible Navier‐Stokes equations including water density inversion and isothermal phase‐change phenomena are assumed as the governing equations of the problem. A fixed‐mesh finite element formulation is proposed for the numerical solution of such model. In particular, this formulation is applied to the analysis of two different transient problems.

Findings

The numerical results computed with the finite element formulation have been found to be very similar to the corresponding predictions, also obtained in this study, provided by a finite volume enthalpy‐based technique. Both numerical results, in turn, satisfactorily approached the available experimental measurements expressly conducted in the context of this work for validation purposes.

Research limitations/implications

They are mainly due to some model simplifications (e.g. no volume changes are considered during the solid‐liquid transformation) and to the inherent difficulties associated with the experimental measurements.

Practical implications

This study may be relevant for a better understanding of the phenomena occurring in different engineering applications involving phase‐change in water: food freezing, ice formation in pipes, freezing/melting processes in soils, ice growth in plane wings, etc.

Originality/value

The study is mainly focused on the validation of the numerical predictions obtained with the finite element formulation mentioned above with other results provided by a well‐known finite volume technique and, in addition, with available laboratory measurements carried out in the context of this work.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 17 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of over 6000