Search results

1 – 5 of 5
Article
Publication date: 19 February 2024

Muhammad Sohail and Syed Tehseen Abbas

This study aims to analyze the Prandtl fluid flow in the presence of better mass diffusion and heat conduction models. By taking into account a linearly bidirectional stretchable…

Abstract

Purpose

This study aims to analyze the Prandtl fluid flow in the presence of better mass diffusion and heat conduction models. By taking into account a linearly bidirectional stretchable sheet, flow is produced. Heat generation effect, thermal radiation, variable thermal conductivity, variable diffusion coefficient and Cattaneo–Christov double diffusion models are used to evaluate thermal and concentration diffusions.

Design/methodology/approach

The governing partial differential equations (PDEs) have been made simpler using a boundary layer method. Strong nonlinear ordinary differential equations (ODEs) relate to appropriate non-dimensional similarity variables. The optimal homotopy analysis technique is used to develop solution.

Findings

Graphs analyze the impact of many relevant factors on temperature and concentration. The physical parameters, such as mass and heat transfer rates at the wall and surface drag coefficients, are also displayed and explained.

Originality/value

The reported work discusses the contribution of generalized flux models to note their impact on heat and mass transport.

Details

Multidiscipline Modeling in Materials and Structures, vol. 20 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 18 July 2023

Alin V. Roşca, Natalia C. Roşca, Ioan Pop and Mikhail A. Sheremet

This paper aims to study numerically the steady natural convective heat transfer of a hybrid nanosuspension (Ag-MgO/H2O) within a partially heated/cooled trapezoidal region with…

89

Abstract

Purpose

This paper aims to study numerically the steady natural convective heat transfer of a hybrid nanosuspension (Ag-MgO/H2O) within a partially heated/cooled trapezoidal region with linear temperature profiles at inclined walls under an effect of uniform Lorentz force. This investigation is useful for researchers studying in the area of cavity flows to know features of the flow structures and nature of hybrid nanofluid characteristics. In addition, a detailed entropy generation analysis has been performed to highlight possible regimes with minimal entropy generation rates.

Design/methodology/approach

The governing equations formulated using the Oberbeck–Boussinesq approach and single-phase nanoliquid model are transformed to a non-dimensional form by using non-dimensional variables. The obtained equations with appropriate boundary conditions are resolved by the finite difference technique. The developed code has been validated comprehensively. Analysis has been performed for a wide range of governing parameters, including Rayleigh number (Ra = 105), Prandtl number (Pr = 6.82), Hartmann number (Ha = 0–100), magnetic field inclination angle (φ = 0–?/2) and nanoparticles volume fraction (φhnf = 0 and 2%).

Findings

It has been shown that inclined magnetic field can be used to manage the energy transport performance. An inclusion of nanoparticles without Lorentz force influence allows forming more stable convective regime with descending heat plume in the central zone, while such a regime was performed for clear fluid only for moderate and high Hartmann numbers. Moreover, the average overall entropy generation can be decreased with a growth of the Hartmann number, while an addition of hybrid nanoparticles allows reducing this parameter for Ha = 30 and 50. The average Nusselt number can be increased with a growth of the nanoparticles concentration for low values of the magnetic field intensity.

Originality/value

Governing equations written using the conservation laws and dimensionless non-primitive variables have been resolved by the finite difference approach. The created numerical code has been verified by applying the grid independence test and computational outcomes of other researchers. The comprehensive analysis for various key parameters has been performed.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 9 January 2024

Bhupendra Kumar Sharma, Umesh Khanduri, Rishu Gandhi and Taseer Muhammad

The purpose of this paper is to study haemodynamic flow characteristics and entropy analysis in a bifurcated artery system subjected to stenosis, magnetohydrodynamic (MHD) flow…

Abstract

Purpose

The purpose of this paper is to study haemodynamic flow characteristics and entropy analysis in a bifurcated artery system subjected to stenosis, magnetohydrodynamic (MHD) flow and aneurysm conditions. The findings of this study offer significant insights into the intricate interplay encompassing electro-osmosis, MHD flow, microorganisms, Joule heating and the ternary hybrid nanofluid.

Design/methodology/approach

The governing equations are first non-dimensionalised, and subsequently, a coordinate transformation is used to regularise the irregular boundaries. The discretisation of the governing equations is accomplished by using the Crank–Nicolson scheme. Furthermore, the tri-diagonal matrix algorithm is applied to solve the resulting matrix arising from the discretisation.

Findings

The investigation reveals that the velocity profile experiences enhancement with an increase in the Debye–Hückel parameter, whereas the magnetic field parameter exhibits the opposite effect, reducing the velocity profile. A comparative study demonstrates the velocity distribution in Au-CuO hybrid nanofluid and Au-CuO-GO ternary hybrid nanofluid. The results indicate a notable enhancement in velocity for the ternary hybrid nanofluid compared to the hybrid nanofluids. Moreover, an increase in the Brinkmann number results in an augmentation in entropy generation.

Originality/value

This study investigates the flow characteristics and entropy analysis in a bifurcated artery system subjected to stenosis, MHD flow and aneurysm conditions. The governing equations are non-dimensionalised, and a coordinate transformation is applied to regularise the irregular boundaries. The Crank–Nicolson scheme is used to model blood flow in the presence of a ternary hybrid nanofluid (Au-CuO-GO/blood) within the arterial domain. The findings shed light on the complex interactions involving stenosis, MHD flow, aneurysms, Joule heating and the ternary hybrid nanofluid. The results indicate a decrease in the wall shear stress (WSS) profile with increasing stenosis size. The MHD effects are observed to influence the velocity distribution, as the velocity profile exhibits a declining nature with an increase in the Hartmann number. In addition, entropy generation increases with an enhancement in the Brinkmann number. This research contributes to understanding fluid dynamics and heat transfer mechanisms in bifurcated arteries, providing valuable insights for diagnosing and treating cardiovascular diseases.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 8 January 2024

Anup Kumar, Bhupendra Kumar Sharma, Bandar Bin-Mohsen and Unai Fernandez-Gamiz

A parabolic trough solar collector is an advanced concentrated solar power technology that significantly captures radiant energy. Solar power will help different sectors reach…

Abstract

Purpose

A parabolic trough solar collector is an advanced concentrated solar power technology that significantly captures radiant energy. Solar power will help different sectors reach their energy needs in areas where traditional fuels are in use. This study aims to examine the sensitivity analysis for optimizing the heat transfer and entropy generation in the Jeffrey magnetohydrodynamic hybrid nanofluid flow under the influence of motile gyrotactic microorganisms with solar radiation in the parabolic trough solar collectors. The influences of viscous dissipation and Ohmic heating are also considered in this investigation.

Design/methodology/approach

Governing partial differential equations are derived via boundary layer assumptions and nondimensionalized with the help of suitable similarity transformations. The resulting higher-order coupled ordinary differential equations are numerically investigated using the Runga-Kutta fourth-order numerical approach with the shooting technique in the computational MATLAB tool.

Findings

The numerical outcomes of influential parameters are presented graphically for velocity, temperature, entropy generation, Bejan number, drag coefficient and Nusselt number. It is observed that escalating the values of melting heat parameter and the Prandl number enhances the Nusselt number, while reverse effect is observed with an enhancement in the magnetic field parameter and bioconvection Lewis number. Increasing the magnetic field and bioconvection diffusion parameter improves the entropy and Bejan number.

Originality/value

Nanotechnology has captured the interest of researchers due to its engrossing performance and wide range of applications in heat transfer and solar energy storage. There are numerous advantages of hybrid nanofluids over traditional heat transfer fluids. In addition, the upswing suspension of the motile gyrotactic microorganisms improves the hybrid nanofluid stability, enhancing the performance of the solar collector. The use of solar energy reduces the industry’s dependency on fossil fuels.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 11 July 2023

Sara I. Abdelsalam, A. Magesh, P. Tamizharasi and A.Z. Zaher

The purpose of this paper is to investigate the behavior of a non-Newtonian nanofluid caused by peristaltic waves along an asymmetric channel. Additionally considered is the…

Abstract

Purpose

The purpose of this paper is to investigate the behavior of a non-Newtonian nanofluid caused by peristaltic waves along an asymmetric channel. Additionally considered is the production of thermal radiation and activation energy.

Design/methodology/approach

The equations of momentum, mass and temperature of Sutterby nanofluids are obtained for long wavelength. By taking into account the velocity, temperature and concentration, the formulation is further finished.

Findings

Analyses of the physical variables influencing flow features are represented graphically. The present investigation shows that an enhancement in the temperature ratio parameter results in an increase in both the temperature and concentration. The investigation also shows that the dimensionless reaction rate significantly raises the kinetic energy of the reactant, which permits more particle collisions and as a result, raises the temperature field.

Originality/value

Due to their importance in the treatment of cancer, activation energy and thermal radiation as a route of heat transfer are crucial and exciting phenomena for researchers. So, the cancer cells are killed, and tumors are reduced in size with heat and making hyperthermia therapy a cutting-edge cancer treatment.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Access

Year

Last 3 months (5)

Content type

1 – 5 of 5