Search results

1 – 10 of 314
Article
Publication date: 24 April 2024

Haiyan Song and Hanyuan Zhang

The aim of this paper is to provide a narrative review of previous research on tourism demand modelling and forecasting and potential future developments.

Abstract

Purpose

The aim of this paper is to provide a narrative review of previous research on tourism demand modelling and forecasting and potential future developments.

Design/methodology/approach

A narrative approach is taken in this review of the current body of knowledge.

Findings

Significant methodological advancements in tourism demand modelling and forecasting over the past two decades are identified.

Originality/value

The distinct characteristics of the various methods applied in the field are summarised and a research agenda for future investigations is proposed.

目的

本文旨在对先前关于旅游需求建模和预测的研究进行叙述性回顾并对未来潜在发展进行展望。

设计/方法

本文采用叙述性回顾方法对当前知识体系进行了评论。

研究结果

本文确认了过去二十年旅游需求建模和预测方法论方面的重要进展。

独创性

本文总结了该领域应用的各种方法的独特特征, 并对未来研究提出了建议。

Objetivo

El objetivo de este documento es ofrecer una revisión narrativa de la investigación previa sobre modelización y previsión de la demanda turística y los posibles desarrollos futuros.

Diseño/metodología/enfoque

En esta revisión del marco actual de conocimientos sobre modelización y previsión de la demanda turística y los posibles desarrollos futuros,se adopta un enfoque narrativo.

Resultados

Se identifican avances metodológicos significativos en la modelización y previsión de la demanda turística en las dos últimas décadas.

Originalidad

Se resumen las características propias de los diversos métodos aplicados en este campo y se propone una agenda de investigación para futuros trabajos.

Article
Publication date: 12 April 2024

Tongzheng Pu, Chongxing Huang, Haimo Zhang, Jingjing Yang and Ming Huang

Forecasting population movement trends is crucial for implementing effective policies to regulate labor force growth and understand demographic changes. Combining migration theory…

Abstract

Purpose

Forecasting population movement trends is crucial for implementing effective policies to regulate labor force growth and understand demographic changes. Combining migration theory expertise and neural network technology can bring a fresh perspective to international migration forecasting research.

Design/methodology/approach

This study proposes a conditional generative adversarial neural network model incorporating the migration knowledge – conditional generative adversarial network (MK-CGAN). By using the migration knowledge to design the parameters, MK-CGAN can effectively address the limited data problem, thereby enhancing the accuracy of migration forecasts.

Findings

The model was tested by forecasting migration flows between different countries and had good generalizability and validity. The results are robust as the proposed solutions can achieve lesser mean absolute error, mean squared error, root mean square error, mean absolute percentage error and R2 values, reaching 0.9855 compared to long short-term memory (LSTM), gated recurrent unit, generative adversarial network (GAN) and the traditional gravity model.

Originality/value

This study is significant because it demonstrates a highly effective technique for predicting international migration using conditional GANs. By incorporating migration knowledge into our models, we can achieve prediction accuracy, gaining valuable insights into the differences between various model characteristics. We used SHapley Additive exPlanations to enhance our understanding of these differences and provide clear and concise explanations for our model predictions. The results demonstrated the theoretical significance and practical value of the MK-CGAN model in predicting international migration.

Details

Data Technologies and Applications, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2514-9288

Keywords

Abstract

Details

Understanding Financial Risk Management, Third Edition
Type: Book
ISBN: 978-1-83753-253-7

Abstract

Details

Understanding Financial Risk Management, Third Edition
Type: Book
ISBN: 978-1-83753-253-7

Article
Publication date: 25 April 2024

Tulsi Pawan Fowdur and Ashven Sanghan

The purpose of this paper is to develop a blockchain-based data capture and transmission system that will collect real-time power consumption data from a household electrical…

Abstract

Purpose

The purpose of this paper is to develop a blockchain-based data capture and transmission system that will collect real-time power consumption data from a household electrical appliance and transfer it securely to a local server for energy analytics such as forecasting.

Design/methodology/approach

The data capture system is composed of two current transformer (CT) sensors connected to two different electrical appliances. The CT sensors send the power readings to two Arduino microcontrollers which in turn connect to a Raspberry-Pi for aggregating the data. Blockchain is then enabled onto the Raspberry-Pi through a Java API so that the data are transmitted securely to a server. The server provides real-time visualization of the data as well as prediction using the multi-layer perceptron (MLP) and long short term memory (LSTM) algorithms.

Findings

The results for the blockchain analysis demonstrate that when the data readings are transmitted in smaller blocks, the security is much greater as compared with blocks of larger size. To assess the accuracy of the prediction algorithms data were collected for a 20 min interval to train the model and the algorithms were evaluated using the sliding window approach. The mean average percentage error (MAPE) was used to assess the accuracy of the algorithms and a MAPE of 1.62% and 1.99% was obtained for the LSTM and MLP algorithms, respectively.

Originality/value

A detailed performance analysis of the blockchain-based transmission model using time complexity, throughput and latency as well as energy forecasting has been performed.

Details

Sensor Review, vol. 44 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 23 April 2024

Jaemin Kim, Michael Greiner and Ellen Zhu

The worldwide imposition of lockdown measures to control the 2020 coronavirus disease 2019 (COVID-19) outbreak has shifted most executive communications with external stakeholders…

Abstract

Purpose

The worldwide imposition of lockdown measures to control the 2020 coronavirus disease 2019 (COVID-19) outbreak has shifted most executive communications with external stakeholders online, resulting in quick responses from stakeholders. This study aims to understand how presentational styles exhibited in online communication induce immediate audience responses and empirically test the effectiveness of reactive impression management tactics.

Design/methodology/approach

The authors analyze presentational styles using MP3 files containing executive utterances during earnings call conferences held by S&P 100-listed firms after June 2020, the quarter after the World Health Organization declared the COVID-19 outbreak a pandemic on March 11, 2020. Using timestamps, the authors link each utterance to a 1-minute interval change in the ask/bid prices of the stocks that occurs a minute after the corresponding utterance begins.

Findings

Exhibiting an informational presentation style in earnings calls leads to positive and immediate audience responses. Managers tend to increase their reliance on promotional presentation styles rather than on informational ones when quarterly earnings exceed market forecasts.

Originality/value

Drawing on organizational genre theory, this research identifies the discrepancy between the presentation styles that audiences positively respond to and those that managers tend to exhibit in earnings calls and provides a reactive impression management typology for immediate responses from online audiences.

Details

Management Decision, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0025-1747

Keywords

Article
Publication date: 7 May 2024

Irina Alexandra Georgescu, Simona Vasilica Oprea and Adela Bâra

In this paper, we aim to provide an extensive analysis to understand how various factors influence electricity prices in competitive markets, focusing on the day-ahead electricity…

Abstract

Purpose

In this paper, we aim to provide an extensive analysis to understand how various factors influence electricity prices in competitive markets, focusing on the day-ahead electricity market in Romania.

Design/methodology/approach

Our study period began in January 2019, before the COVID-19 pandemic, and continued for several months after the onset of the war in Ukraine. During this time, we also consider other challenges like reduced market competitiveness, droughts and water scarcity. Our initial dataset comprises diverse variables: prices of essential energy sources (like gas and oil), Danube River water levels (indicating hydrological conditions), economic indicators (such as inflation and interest rates), total energy consumption and production in Romania and a breakdown of energy generation by source (coal, gas, hydro, oil, nuclear and renewable energy sources) from various data sources. Additionally, we included carbon certificate prices and data on electricity import, export and other related variables. This dataset was collected via application programming interface (API) and web scraping, and then synchronized by date and hour.

Findings

We discover that the competitiveness significantly affected electricity prices in Romania. Furthermore, our study of electricity price trends and their determinants revealed indicators of economic health in 2019 and 2020. However, from 2021 onwards, signs of a potential economic crisis began to emerge, characterized by changes in the normal relationships between prices and quantities, among other factors. Thus, our analysis suggests that electricity prices could serve as a predictive index for economic crises. Overall, the Granger causality findings from 2019 to 2022 offer valuable insights into the factors driving energy market dynamics in Romania, highlighting the importance of economic policies, fuel costs and environmental regulations in shaping these dynamics.

Originality/value

We combine principal component analysis (PCA) to reduce the dataset’s dimensionality. Following this, we use continuous wavelet transform (CWT) to explore frequency-domain relationships between electricity price and quantity in the day-ahead market (DAM) and the components derived from PCA. Our research also delves into the competitiveness level in the DAM from January 2019 to August 2022, analyzing the Herfindahl-Hirschman index (HHI).

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 30 April 2024

Arpit Solanki and Debasis Sarkar

This study aims to identify significant factors, analyse them using the consistent fuzzy preference relations (CFPR) method and forecast the probability of successful deployment…

Abstract

Purpose

This study aims to identify significant factors, analyse them using the consistent fuzzy preference relations (CFPR) method and forecast the probability of successful deployment of the internet of things (IoT) and cloud computing (CC) in Gujarat, India’s building sector.

Design/methodology/approach

From the previous studies, 25 significant factors were identified, and a questionnaire survey with personal interviews obtained 120 responses from building experts in Gujarat, India. The questionnaire survey data’s validity, reliability and descriptive statistics were also assessed. Building experts’ opinions are inputted into the CFPR method, and priority weights and ratings for probable outcomes are obtained to forecast success and failure.

Findings

The findings demonstrate that the most important factors are affordable system and ease of use and battery life and size of sensors, whereas less important ones include poor collaboration between IoT and cloud developer community and building sector and suitable location. The forecasting values demonstrate that the factor suitable location has a high probability of success; however, factors such as loss of jobs and data governance have a high probability of failure. Based on the forecasted values, the probability of success (0.6420) is almost twice that of failure (0.3580). It shows that deploying IoT and CC in the building sector of Gujarat, India, is very much feasible.

Originality/value

Previous studies analysed IoT and CC factors using different multi-criteria decision-making (MCDM) methods to merely prioritise ranking in the building sector, but forecasting success/failure makes this study unique. This research is generally applicable, and its findings may be utilised for decision-making and deployment of IoT and CC in the building sector anywhere globally.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 8 May 2024

Jing Ma

The diffusion of technologies from other sectors, and innovations in kitchen equipment, fueled structural changes within the foodservice industry. However, this change comes at a…

Abstract

Purpose

The diffusion of technologies from other sectors, and innovations in kitchen equipment, fueled structural changes within the foodservice industry. However, this change comes at a price of disrupting the critical step of assessing the demand forecast accuracy. This study aims to explore a surprisingly unique and elevated complexity when assessing the critically important demand forecast accuracy.

Design/methodology/approach

The paper develops a mathematical model to describe and explore the nature of the problem in structural biased demand forecast accuracy assessment. It then uses numerical simulation to construct a market example to gain better insights on the bias characteristics. Finally, the forecast accuracy measurement’s inherent bias is contrasted with that of other typical hospitality forecasting setups.

Findings

This paper outlines the theoretical underpinnings of how demand forecasts in the central kitchen setup are dynamic and thus produce a structural bias. More specifically, this paper discovers how, in this context of orders from a central location, the forecasts set the capacity constraints, and, consequently, generate a considerably more biased forecast accuracy measure. Relying on such forecast accuracy measures can lead to serious negative business outcomes.

Originality/value

To the best of the author’s knowledge, this study is the first to show that in the unique new technology enabled environment of central kitchen operation, where daily dish demand forecasts set the daily constrained capacity levels, the accuracy measure is severely biased, and consequently accuracy is likely to deteriorate, which in turn, could lead to suboptimal decisions. The major theoretical contribution of this study is a novel analytical model which explains and describes the bias in the accuracy measurement.

研究目的

技术从其他行业的传播以及厨房设备的创新推动了餐饮业内的结构变化。然而, 这种变化直接影响了评估需求预测准确性。本研究探讨了在餐饮业结构改变后,评估至关重要的需求预测准确性时所面临的令人独特和复杂性。

研究方法

本文自研了一个数学模型来描述和探讨评估需求预测准确性中的结构性偏差的本质。然后, 使用数值模拟构建一个市场示例, 以更好地了解上述偏差的特征。最后, 将这种预测准确性评估的系统性偏差与其他传统的餐饮业需求预测情境进行对比。

研究发现

本文概述了中央厨房运营中需求预测是动态的, 因此产生了结构性偏差的理论基础。更具体地说, 在使用中央厨房并集中订单的情境下, 本文发现需求预测直接设定了容量限制, 因此产生了在需求预测准确度衡量中的结构性偏差。依赖这样的预测准确性度量可能产生严重的负面商业结果。

研究创新

这项研究首次表明, 在中央厨房运营的独特的新环境中, 由于新的设定即每日菜品需求预测直接决定每日容量水平, 需求预测准确度衡量标准有着严重偏差, 长期来讲准确性可能下降, 从而导致次优的商业决策。本研究的主要理论贡献是提供一个餐饮企业在新运营环境中解释和描述需求预测准确度中结构性偏差的全新分析模型。

Details

Journal of Hospitality and Tourism Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1757-9880

Keywords

Article
Publication date: 19 April 2024

Mahesh Gaikwad, Suvir Singh, N. Gopalakrishnan, Pradeep Bhargava and Ajay Chourasia

This study investigates the impact of the fire decay phase on structural damage using the sectional analysis method. The primary objective of this work is to forecast the…

Abstract

Purpose

This study investigates the impact of the fire decay phase on structural damage using the sectional analysis method. The primary objective of this work is to forecast the non-dimensional capacity parameters for the axial and flexural load-carrying capacity of reinforced concrete (RC) sections for heating and the subsequent post-heating phase (decay phase) of the fire.

Design/methodology/approach

The sectional analysis method is used to determine the moment and axial capacities. The findings of sectional analysis and heat transfer for the heating stage are initially validated, and the analysis subsequently proceeds to determine the load capacity during the fire’s heating and decay phases by appropriately incorporating non-dimensional sectional and material parameters. The numerical analysis includes four fire curves with different cooling rates and steel percentages.

Findings

The study’s findings indicate that the rate at which the cooling process occurs after undergoing heating substantially impacts the axial and flexural capacity. The maximum degradation in axial and flexural capacity occurred in the range of 15–20% for cooling rates of 3 °C/min and 5 °C/min as compared to the capacity obtained at 120 min of heating for all steel percentages. As the fire cooling rate reduced to 1 °C/min, the highest deterioration in axial and flexural capacity reached 48–50% and 42–46%, respectively, in the post-heating stage.

Research limitations/implications

The established non-dimensional parameters for axial and flexural capacity are limited to the analysed section in the study owing to the thermal profile, however, this can be modified depending on the section geometry and fire scenario.

Practical implications

The study primarily focusses on the degradation of axial and flexural capacity at various time intervals during the entire fire exposure, including heating and cooling. The findings obtained showed that following the completion of the fire’s heating phase, the structural capacity continued to decrease over the subsequent post-heating period. It is recommended that structural members' fire resistance designs encompass both the heating and cooling phases of a fire. Since the capacity degradation varies with fire duration, the conventional method is inadequate to design the load capacity for appropriate fire safety. Therefore, it is essential to adopt a performance-based approach while designing structural elements' capacity for the desired fire resistance rating. The proposed technique of using non-dimensional parameters will effectively support predicting the load capacity for required fire resistance.

Originality/value

The fire-resistant requirements for reinforced concrete structures are generally established based on standard fire exposure conditions, which account for the fire growth phase. However, it is important to note that concrete structures can experience internal damage over time during the decay phase of fires, which can be quantitatively determined using the proposed non-dimensional parameter approach.

Details

Journal of Structural Fire Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-2317

Keywords

1 – 10 of 314