Search results

1 – 10 of 24
Article
Publication date: 28 October 2013

Cheng Cheng and Xiaobing Zhang

In computational fluid dynamics for two-phase reactive flow of interior ballistic, the conventional schemes (MacCormack method, etc.) are known to introduce unphysical…

Abstract

Purpose

In computational fluid dynamics for two-phase reactive flow of interior ballistic, the conventional schemes (MacCormack method, etc.) are known to introduce unphysical oscillations in the region where the gradient is high. This paper aims to improve the ability to capture the complex shock wave during the interior ballistic cycle.

Design/methodology/approach

A two-phase flow model is established to describe the complex physical process based on a modified two-fluid theory. The solution of model is obtained including the following key methods: an approximate Riemann solver to construct upwind fluxes, the MUSCL extension to achieve high-order accuracy, a splitting approach to solve source terms, a self-adapting method to expand the computational domain for projectile motion and a control volume conservation method for the moving boundary.

Findings

The paper is devoted to applying a high-resolution numerical method to simulate a transient two-phase reactive flow with moving boundary in guns. Several verification tests demonstrate the accuracy and reliability of this approach. Simulation of two-phase reaction flow with a projectile motion in a large-caliber gun shows an excellent agreement between numerical simulation and experimental measurements.

Practical implications

This paper has implications for improving the ability to capture the complex physics phenomena of two-phase flow during interior ballistic cycle and predict the combustion details, such as the flame spreading, the formation of pressure waves and so on.

Originality/value

This approach is reliable as a prediction tool for the understanding of the physical phenomenon and can therefore be used as an assessment tool for future interior ballistics studies.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 23 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 2 March 2015

Qiao Luo and Xiaobing Zhang

In engineering applications, gas-solid two-phase reaction flow with multi-moving boundaries is a common phenomenon. The launch process of multiple projectiles is a typical…

Abstract

Purpose

In engineering applications, gas-solid two-phase reaction flow with multi-moving boundaries is a common phenomenon. The launch process of multiple projectiles is a typical example. The flow of adjacent powder chambers is coupled by projectile’s motion. The purpose of this paper is to study this flow by numerical simulation.

Design/methodology/approach

A one-dimensional two-phase reaction flow model and MacCormack difference scheme are implemented in a computational code, and the code is used to simulate the launch process of a system of multiple projectiles. For different launching rates and loading conditions, the simulated results of the launch process of three projectiles are obtained and discussed.

Findings

At low launching rates, projectiles fired earlier in the series have little effect on the launch processes of projectiles fired later. However, at higher launching rates, the projectiles fired first have a great influence on the launch processes of projectiles fired later. As the launching rate increases, the maximum breech pressure for the later projectiles increases. Although the muzzle velocities increase initially, they reach a maximum at some launching rate, and then decrease rapidly. The muzzle velocities and maximum breech pressures of the three projectiles have an approximate linear relationship with the charge weight, propellant web size and chamber volume.

Originality/value

This paper presents a prediction tool to understand the physical phenomenon of the gas-solid two-phase reaction flow with multi-moving boundaries, and can be used as a research tool for future interior ballistics studies of launch system of multiple projectiles.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 25 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 7 August 2017

Qiao Luo and Xiaobing Zhang

The numerical simulation of the serial launch process of multiple projectiles is an important engineering problem. However, the projectiles’ motion law is hard to obtain…

Abstract

Purpose

The numerical simulation of the serial launch process of multiple projectiles is an important engineering problem. However, the projectiles’ motion law is hard to obtain completely only by interior ballistic model. The muzzle flow field affects the projectiles’ velocities when the projectiles pass through it. Also, the propellant gas from previous projectiles may decelerate the later projectiles. Therefore, the aftereffect period should be simulated together with the interior ballistic process of multiple projectiles when researching the serial launch process for accurate motion law of the projectiles.

Design/methodology/approach

The computational fluid dynamics (CFD) software is used to simulate the muzzle flow field. A one-dimensional two-phase reaction flow model is implemented in a computational code for the numerical simulation of gas-solid two-phase reaction flow, during the serial launch process. The computational code is coupled with CFD software by a user-defined function.

Findings

Compared with the first projectile, the formation process of the shock bottle of the second projectile is different. After the projectile head flies out of the muzzle, the projectile head pressure decreases rapidly, but then, it is not always equal to 0.1 MPa. After the projectiles leave the muzzle, the velocity increments of each projectile are mainly determined by muzzle pressure.

Originality/value

This paper presents a prediction tool to understand the projectiles’ motion law during the serial launch process of the multiple projectiles considering aftereffect period, and can be used as a research tool for future ballistic studies of a serial launch system of multiple projectiles.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 21 November 2018

Tao Xue, Xiaobing Zhang and K.K. Tamma

A consistent implementation of the general computational framework of unified second-order time accurate integrators via the well-known GSSSS framework in conjunction with the…

Abstract

Purpose

A consistent implementation of the general computational framework of unified second-order time accurate integrators via the well-known GSSSS framework in conjunction with the traditional Finite Difference Method is presented to improve the numerical simulations of reactive two-phase flows.

Design/methodology/approach

In the present paper, the phase interaction evaluation in the present implementation of the reactive two-phase flows has been derived and implemented to preserve the consistency of the correct time level evaluation during the time integration process for solving the two phase flow dynamics with reactions.

Findings

Numerical examples, including the classical Sod shock tube problem and a reactive two-phase flow problem, are exploited to validate the proposed time integration framework and families of algorithms consistently to second order in time accuracy; this is in contrast to the traditional practices which only seem to obtain first-order time accuracy because of the inconsistent time level implementation with respect to the interaction of two phases. The comparisons with the traditional implementation and the advantages of the proposed implementation are given in terms of the improved numerical accuracy in time. The proposed approaches provide a correct numerical simulation implementation to the reactive two-phase flows and can obtain better numerical stability and computational features.

Originality/value

The new algorithmic framework and the consistent time level evaluation extended with the GS4 family encompasses a multitude of past and new schemes and offers a general purpose and unified implementation for fluid dynamics.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 January 1961

A.D.B., M.F.M. and C.G.K.

In their introduction to this book the authors suggest that the rocket is destined to play an extremely important role in the future of mankind and it is, therefore, something…

Abstract

In their introduction to this book the authors suggest that the rocket is destined to play an extremely important role in the future of mankind and it is, therefore, something which should be of interest to all persons concerned with the world in which we live. With this in mind, they have written a book designed to answer the questions ‘What is a rocket Engine?’, ‘How docs it work?’, ‘What can it do?’, and so on.

Details

Aircraft Engineering and Aerospace Technology, vol. 33 no. 1
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 6 August 2019

Chaobin Hu and Xiaobing Zhang

This paper aims to improve the reliability of numerical methods for predicting the transient heat transfers in combustion chambers heated internally by moving heat sources.

Abstract

Purpose

This paper aims to improve the reliability of numerical methods for predicting the transient heat transfers in combustion chambers heated internally by moving heat sources.

Design/methodology/approach

A two-phase fluid dynamic model was used to govern the non-uniformly distributed moving heat sources. A Riemann-problem-based numerical scheme was provided to update the fluid field and provide convective boundary conditions for the heat transfer. The heat conduction in the solids was investigated by using a thermo-mechanical coupled model to obtain a reliable expanding velocity of the heat sources. The coupling between the combustion and the heat transfer is realized based on user subroutines VDFLUX and VUAMP in the commercial software ABAQUS.

Findings

The capability of the numerical scheme in capturing discontinuities in initial conditions and source terms was validated by comparing the predicted results of commonly used verification cases with the corresponding analytical solutions. The coupled model and the numerical methods are capable of investigating heat transfer problems accompanied by extreme conditions such as transient effects, high-temperature and high-pressure working conditions.

Originality/value

The work provides a reliable numerical method to obtain boundary conditions for predicting the heat transfers in solids heated by expanding multiphase reactive flows.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 17 October 2018

Chaobin Hu and Xiaobing Zhang

Various simplifications are introduced into the establishment of numerical models for problems with strong nonlinear interactions. The combustion of energetic materials in a…

Abstract

Purpose

Various simplifications are introduced into the establishment of numerical models for problems with strong nonlinear interactions. The combustion of energetic materials in a chamber with moving boundaries is a typical example. This paper aims to establish a coupled numerical model for predicting the internal combustion in a launch process.

Design/methodology/approach

A two-fluid model is used to predict the fluid field induced by the propellant combustion. The moving boundary is located by using a finite element method. Based on a user subroutine interface in the commercial software ABAQUS, the development of the fluid field and the mechanical interactions is coupled with each other.

Findings

The paper is devoted to provide a coupled computational framework for predicting the propellant combustion in an expanding chamber. The coupling strategy is validated through predicting a pressure-driven piston system. Based on the validated computational framework, the two-phase reactive flows in a launch process is studied. The predicted parameters agree well with experimental measurements.

Originality/value

This paper provide a method to address the difficulties in realizing the dynamic interactions between multi-phase reactive flows and mechanical behaviors. The computational framework can be used as a research tool for investigating fluid field in a combustion chamber with moving boundaries.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 11
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 25 July 2018

Vladan Borovic, Petar Spalevic, Srdjan Jovic, Damir Jerkovic, Vida Drasute and Dejan Rancic

This paper aims to show the implementation in the terrestrial trunked radio (TETRA)-based sensor network. The publicly available data show that, in Serbia, the annual damage…

Abstract

Purpose

This paper aims to show the implementation in the terrestrial trunked radio (TETRA)-based sensor network. The publicly available data show that, in Serbia, the annual damage caused by hailstorms in the past seven years has been estimated almost at an average level of 40m of euros. As the amount of hail was not changed, the hail suppression system of the Republic of Serbia has to be improved, both technically and organizationally, to get better efficiency and protection and to reduce the damage.

Design/methodology/approach

In this paper, the authors show the implementation and improvements in the modern terrestrial trunked radio (TETRA)-based sensor network, and they propose the scientific use of sensors for remote control of automatic hail suppression rocket stations.

Findings

The authors’ idea is that TETRA should be used as an operational and official telecommunicating system for hail suppression activities units. A number of sensors, connected in a network, are used to maintain a high-quality functioning of this digital radio system, managed remotely and controlled either by operators or automatically.

Originality/value

The presented study with a real example attempts to explain as to how the system functions and how it can improve hail suppression activities.

Details

Sensor Review, vol. 39 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Content available
Article
Publication date: 16 October 2009

237

Abstract

Details

Aircraft Engineering and Aerospace Technology, vol. 81 no. 6
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 1 May 1977

The 32nd Salon International de L'Aéronautique et de L'Espace will be staged at Le Bourget—Paris Airport from June 2–12, 1977.

Abstract

The 32nd Salon International de L'Aéronautique et de L'Espace will be staged at Le Bourget—Paris Airport from June 2–12, 1977.

Details

Aircraft Engineering and Aerospace Technology, vol. 49 no. 5
Type: Research Article
ISSN: 0002-2667

1 – 10 of 24