Search results

1 – 10 of 138
Article
Publication date: 25 July 2024

Mengxia Jiang, Yang Liu, Yuxiong Xue, Guangbao Shan, Jun Lv and Mairui Huang

This paper aims to systematically study the effects of reflow temperature and SAC0307 (SAC) content on the micromorphology and mechanical properties of Sn58Bi-xSAC0307 composite…

Abstract

Purpose

This paper aims to systematically study the effects of reflow temperature and SAC0307 (SAC) content on the micromorphology and mechanical properties of Sn58Bi-xSAC0307 composite solder joints to meet the requirements of high integration and low-temperature packaging of devices and provide references for the application of composite solder joints.

Design/methodology/approach

Sn58Bi and SAC0307 solder paste was mechanically mixed in different proportions to prepare Sn58Bi-xSAC0307/ENIG solder joints. The thermal properties, microstructure and mechanical properties of the composite solder joints were studied.

Findings

As SAC content in the solder increases, the balling temperature of SnBi-SAC solder gradually increases. The addition of SAC alloy reduces the grain size of large Bi-rich phase, and there are small-sized dispersed Bi and Ag3Sn particles in the bulk solder. The intermetallic compounds composition of the SnBi-xSAC/ENIG solder joint changes from Ni3Sn4 to (Ni, Cu)3Sn4 and (Cu, Ni)6Sn5 with SAC increasing. As the soldering temperature increases, the strength of all solder joints shows a rising trend. Among them, the shear strength of SnBi-20SAC solder joints at a reflow temperature of 150°C is approximately 37 MPa. As the reflow temperature increases to 250°C, the shear strength of solder joints increases to approximately 67 MPa.

Originality/value

This study provides a reference for the optimization of low-temperature solder composition and soldering process under different package designs.

Details

Soldering & Surface Mount Technology, vol. 36 no. 4
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 13 August 2024

Jiacheng Zhou, Jinglin Shi, Lei Xu, Fuwen Zhang, Zhigang Wang, Qiang Hu and Huijun He

The reliability of solder joints is closely related to the growth of an intermetallic compound (IMC) layer between the lead-free solder and substrate interface. This paper aims to…

Abstract

Purpose

The reliability of solder joints is closely related to the growth of an intermetallic compound (IMC) layer between the lead-free solder and substrate interface. This paper aims to investigate the growth behavior of the interfacial IMC layer during isothermal aging at 125°C for Sn-3Ag-3Sb-xIn/Cu (x = 0, 1, 2, 3, 4, 5 Wt.%) solder joints with different In contents and commercial Sn-3Ag-0.5Cu/Cu solder joints.

Design/methodology/approach

In this paper, Sn-3Ag-3Sb-xIn/Cu (x = 0, 1, 2, 3, 4, 5 Wt.%) and commercial Sn-3Ag-0.5Cu/Cu solder were prepared for bonding Cu substrate. Then these samples were subjected to isothermal aging for 0, 2, 8, 14, 25 and 45 days. Scanning electron microscopy and transmission electron microscopy were used to analyze the soldering interface reaction and the difference in IMC growth behavior during the isothermal aging process.

Findings

When the concentration of In in the Sn-3Ag-3Sb-xIn/Cu solder joints exceeded 2 Wt.%, a substantial amount of InSb particles were produced. These particles acted as a diffusion barrier, impeding the growth of the IMC layer at the interface. The growth of the Cu3Sn layer during the aging process was strongly correlated with the presence of In. The growth rate of the Cu3Sn layer was significantly reduced when the In concentration exceeded 3 Wt.%.

Originality/value

The addition of In promotes the formation of InSb particles in Sn-3Ag-3Sb-xIn/Cu solder joints. These particles limit the growth of the total IMC layer, while a higher In content also slows the growth of the Cu3Sn layer. This study is significant for designing alloy compositions for new high-reliability solders.

Details

Soldering & Surface Mount Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 4 June 2024

Fengjiang Wang, Dapeng Yang and Guoqing Yin

This paper aims to focus on the reliability of Sn15Bi–xAg and Sn15Bi–xCu solder joints during isothermal aging.

Abstract

Purpose

This paper aims to focus on the reliability of Sn15Bi–xAg and Sn15Bi–xCu solder joints during isothermal aging.

Design/methodology/approach

The effects of Ag or Cu additions on the microstructure, interfacial metallic compound layer and shear strength of Sn–15Bi (Sn15Bi) based solder joints during were investigated. The effects of Ag or Cu additions on the microstructure and tensile properties of Sn15Bi-based bulk solders were also investigated to provide a comprehensive analysis. The interfacial morphology and microstructure were observed by scanning electron microscopy and the composition in the structure was examined by energy dispersive spectrometer. The shear tests were carried out on the as-soldered and as-aged joints using a ball shear tester.

Findings

The results revealed that by adding Ag or Cu, the microstructure of Sn15Bi solder can be refined. Ag addition increased the tensile strength of Sn15Bi solder but had little effect on elongation. However, Cu addition decreased the tensile strength and elongation of Sn15Bi solder. For solder joints, Ag addition increased the shear strength and toughness of Sn15Bi/Cu joints but Cu addition decreased the shear strength and toughness of Sn15Bi/Cu joints.

Originality/value

The authors can potentially provide a replacement for Sn40Pb traditional solder with Sn15Bi solder by alloying Ag or Cu due to its lower cost and similar melting point as Sn–Pb solder.

Details

Soldering & Surface Mount Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 31 January 2024

Zhenkun Li, Zhili Zhao, Jinliang Liu and Xin Ding

To solve the problems caused by using precise molds for copper column positioning in the current column grid array package, this paper aims to optimize the proposed friction…

Abstract

Purpose

To solve the problems caused by using precise molds for copper column positioning in the current column grid array package, this paper aims to optimize the proposed friction plunge micro-welding (FPMW) technology without mold assistance, to overcome the problems of low interfacial bonding strength, shrinkage cavities and flash defects caused by the low hold-tight force of solder on the copper column.

Design/methodology/approach

A pressurizing device installed under the drill chuck of the friction welding machine is designed, which is used to apply a static constraint to the solder ball obliquely downward to increase the hold-tight force of the peripheral solder on the copper column during welding and promote the friction metallurgical connection between them.

Findings

The results show that the application of static constraint during welding can increase the compactness of the solder near the friction interface and effectively inhibit occurrences of flash, shrinkage cavities and crystal defects such as vacancies. Therefore, compared with the unconstrained (UC) FPMW, the average strength of the statically constrained (SC) FPMW joints and aged SC-FPMW joints can be increased by 51.1% and 122.6%, and the problem of the excessive growth of the interfacial connection layer in the UC-FPMW joints during aging can be effectively avoided.

Originality/value

The application of static constraint effectively inhibits the occurrence of defects such as shrinkage cavities, vacancies and flash in FPMW joints, and the welding quality is significantly improved.

Details

Soldering & Surface Mount Technology, vol. 36 no. 3
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 15 April 2024

Rilwan Kayode Apalowo, Mohamad Aizat Abas, Zuraihana Bachok, Mohamad Fikri Mohd Sharif, Fakhrozi Che Ani, Mohamad Riduwan Ramli and Muhamed Abdul Fatah bin Muhamed Mukhtar

This study aims to investigate the possible defects and their root causes in a soft-termination multilayered ceramic capacitor (MLCC) when subjected to a thermal reflow process.

Abstract

Purpose

This study aims to investigate the possible defects and their root causes in a soft-termination multilayered ceramic capacitor (MLCC) when subjected to a thermal reflow process.

Design/methodology/approach

Specimens of the capacitor assembly were subjected to JEDEC level 1 preconditioning (85 °C/85%RH/168 h) with 5× reflow at 270°C peak temperature. Then, they were inspected using a 2 µm scanning electron microscope to investigate the evidence of defects. The reliability test was also numerically simulated and analyzed using the extended finite element method implemented in ABAQUS.

Findings

Excellent agreements were observed between the SEM inspections and the simulation results. The findings showed evidence of discontinuities along the Cu and the Cu-epoxy layers and interfacial delamination crack at the Cu/Cu-epoxy interface. The possible root causes are thermal mismatch between the Cu and Cu-epoxy layers, moisture contamination and weak Cu/Cu-epoxy interface. The maximum crack length observed in the experimentally reflowed capacitor was measured as 75 µm, a 2.59% difference compared to the numerical prediction of 77.2 µm.

Practical implications

This work's contribution is expected to reduce the additional manufacturing cost and lead time in investigating reliability issues in MLCCs.

Originality/value

Despite the significant number of works on the reliability assessment of surface mount capacitors, work on crack growth in soft-termination MLCC is limited. Also, the combined experimental and numerical investigation of reflow-induced reliability issues in soft-termination MLCC is limited. These cited gaps are the novelties of this study.

Details

Microelectronics International, vol. 41 no. 3
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 6 August 2024

Jinshuai Xie, Lei Tang, Pengfei Gao, Zhengquan Zhang and Liangfeng Li

This paper aims to study the effect of different Ni content on the microstructure and properties of Sn-0.7Cu alloy. Then, the spreading area, wetting angle, interface layer…

28

Abstract

Purpose

This paper aims to study the effect of different Ni content on the microstructure and properties of Sn-0.7Cu alloy. Then, the spreading area, wetting angle, interface layer thickness and microstructure of the soldering interface was observed and analyzed at different soldering temperatures and times.

Design/methodology/approach

Sn-0.7Cu-xNi solder alloy was prepared by a high-frequency induction melting furnace. Then Sn-0.7Cu-xNi alloy was soldered on a Cu substrate at different soldering temperatures and times.

Findings

It was found that Ni made the intermetallic compounds in the Sn-0.7Cu solder alloy gradually aggregate and coarsen, and the microstructure was refined. The phase compositions of the solder alloy are mainly composed of the ß-Sn phase and a few intermetallic compounds, Cu6Sn5 + (Cu, Ni)6Sn5. The maximum value of 12.1 HV is reached when the Ni content is 0.1 Wt.%. When the Ni content is 0.5 Wt.%, the wettability of the solder alloy increases by about 15%, the interface thickness increases by about 8.9% and the scallop-like structure is the most refined. When the soldering time is 10 min and the soldering temperature is 280 °C, the wettability of Sn-0.7Cu-0.2Ni is the best.

Originality/value

It is groundbreaking to combine the change in soldering interface with the soldering industry. The effects of different soldering temperatures and times on the Sn-0.7Cu-xNi alloy were studied. Under the same conditions, Sn-0.7Cu-0.2Ni exhibits better wettability and more stable solder joint stability.

Details

Soldering & Surface Mount Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 11 June 2024

Haifei Zheng, Yanguo Yin, Rongrong Li, Cong Liu and Qi Chen

This paper aims to investigate the effect of chemical nickel plating and mechanical alloying on the mechanical and tribological properties of FeS/iron-based self-lubricating…

Abstract

Purpose

This paper aims to investigate the effect of chemical nickel plating and mechanical alloying on the mechanical and tribological properties of FeS/iron-based self-lubricating materials as well as the wear mechanism of the materials.

Design/methodology/approach

Surface modification of FeS powder was carried out by chemical nickel plating method and mechanical alloying of mixed powder by ball milling. The mechanical properties of the material were tested by tribological testing by M-200 ring block type friction and wear tester. Optical microscope was used to observe the surface morphology of the material and the transfer film on the surface of the mate parts, and scanning electron microscope and EDS were used to characterize the wear surface.

Findings

Mechanical alloying ball milling was carried out so that the lubricating particles in the matrix are uniformly dispersed; nickel-plated layer enhances the interfacial bonding of FeS and the matrix, and the combination of the two improves the mechanical properties of the material, and at the same time the friction side of the surface of the lubrication of FeS lubricant transfer film formed is denser and more intact, and the friction coefficient of friction side and the wear rate of the material have been greatly reduced.

Originality/value

This work aims to improve the mechanical and tribological properties of FeS/iron-based self-lubricating materials and to provide a reference for the preparation of materials with excellent overall properties.

Details

Industrial Lubrication and Tribology, vol. 76 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 11 September 2024

Dongyang Cao, Daniel Bouzolin, Christopher Paniagua, Hongbing Lu and D.Todd Griffith

Herein, the authors report the effects of printing parameters, joining method, and annealing conditions on the structural performance of fusion-joined short-beam sections produced…

Abstract

Purpose

Herein, the authors report the effects of printing parameters, joining method, and annealing conditions on the structural performance of fusion-joined short-beam sections produced by additive manufacturing.

Design/methodology/approach

The authors first identified appropriate printing parameters for joining segmented short beams and then used those parameters to print and fusion-join segments with different configurations of stiffeners to form a longer section of a wing or small wind turbine blade structure.

Findings

It was found that the beams with three lateral and three base stiffening ribs give the highest flexural strength among the three beams investigated. Results on joined beams annealed at different conditions showed that annealing at 70 °C for 0.5 h yields higher performance than annealing at the same temperature for longer times. It is also found that in the case of the hot-plate-welded three-dimensional (3D)-printed structures, no annealing is needed for reaching a high strength-to-weight ratio, but annealing is helpful for maximizing the modulus-to-weight ratio. Both thermal buckling and edge wrapping were observed under annealing at 70°C for 0.5 h for 3D-printed beams comprising two lateral and four base stiffening plates.

Originality/value

Fusion-joining of additively manufactured segments is needed owing to the constraint in building volume of a typical commercial 3D-printer. However, study of the effect of process parameters is needed to quantify their effect on mechanical performance. This investigation has therefore identified key printing parameters and annealing conditions for fusion-joining short segments to form larger structures, from multiple 3D-printed sections, such as wind blade structures.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 30 April 2024

Fang Liu, Zilong Wang, JiaCheng Zhou, Yuqin Wu and Zhen Wang

The purpose of this study is to investigate the effects of Ce and Sb doping on the microstructure and thermal mechanical properties of Sn-1.0Ag-0.5Cu lead-free solder. The effects…

Abstract

Purpose

The purpose of this study is to investigate the effects of Ce and Sb doping on the microstructure and thermal mechanical properties of Sn-1.0Ag-0.5Cu lead-free solder. The effects of 0.5%Sb and 0.07%Ce doping on microstructure, thermal properties and mechanical properties of Sn-1.0Ag-0.5Cu lead-free solder were investigated.

Design/methodology/approach

According to the mass ratio, the solder alloys were prepared from tin ingot, antimony ingot, silver ingot and copper ingot with purity of 99.99% at 400°C. X-ray diffractometer was adopted for phase analysis of the alloys. Optical microscopy, scanning electron microscopy and energy dispersive spectrometer were used to study the effect of the Sb and Ce doping on the microstructure of the solder. Then, the thermal characteristics of alloys were characterized by a differential scanning calorimeter (DSC). Finally, the ultimate tensile strength (UTS), elongation (EL.%) and yield strength (YS) of solder alloys were measured by tensile testing machine.

Findings

With the addition of Sb and Ce, the ß-Sn and intermetallic compounds of solders were refined and distributed more evenly. With the addition of Sb, the UTS, EL.% and YS of Sn-1.0Ag-0.5Cu increased by 15.3%, 46.8% and 16.5%, respectively. The EL.% of Sn-1.0Ag-0.5Cu increased by 56.5% due to Ce doping. When both Sb and Ce elements are added, the EL.% of Sn-1.0Ag-0.5Cu increased by 93.3%.

Originality/value

The addition of 0.5% Sb and 0.07% Ce can obtain better comprehensive performance, which provides a helpful reference for the development of Sn-Ag-Cu lead-free solder.

Details

Soldering & Surface Mount Technology, vol. 36 no. 3
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 27 February 2024

Jacques Abou Khalil, César Jiménez Navarro, Rami El Jeaid, Abderahmane Marouf, Rajaa El Akoury, Yannick Hoarau, Jean-François Rouchon and Marianna Braza

This study aims to investigate the morphing concepts able to manipulate the dynamics of the downstream unsteadiness in the separated shear layers and, in the wake, be able to…

Abstract

Purpose

This study aims to investigate the morphing concepts able to manipulate the dynamics of the downstream unsteadiness in the separated shear layers and, in the wake, be able to modify the upstream shock–boundary layer interaction (SBLI) around an A320 morphing prototype to control these instabilities, with emphasis to the attenuation or even suppression of the transonic buffet. The modification of the aerodynamic performances according to a large parametric study carried out at Reynolds number of 4.5 × 106, Mach number of 0.78 and various angles of attack in the range of (0, 2.4)° according to two morphing concepts (travelling waves and trailing edge vibration) are discussed, and the final benefits in aerodynamic performance increase are evaluated.

Design/methodology/approach

This article examines through high fidelity (Hi-Fi) numerical simulation the effects of the trailing edge (TE) actuation and of travelling waves along a specific area of the suction side starting from practically the most downstream position of the shock wave motion according to the buffet and extending up to nearly the TE. The present paper studies through spectral analysis the coherent structures development in the near wake and the comparison of the aerodynamic forces to the non-actuated case. Thus, the physical mechanisms of the morphing leading to the increase of the lift-to-drag ratio and the drag and noise sources reduction are identified.

Findings

This study investigates the influence of shear-layer and near-wake vortices on the SBLI around an A320 aerofoil and attenuation of the related instabilities thanks to novel morphing: travelling waves generated along the suction side and trailing-edge vibration. A drag reduction of 14% and a lift-to-drag increase in the order of 8% are obtained. The morphing has shown a lift increase in the range of (1.8, 2.5)% for angle of attack of 1.8° and 2.4°, where a significant lift increase of 7.7% is obtained for the angle of incidence of 0° with a drag reduction of 3.66% yielding an aerodynamic efficiency of 11.8%.

Originality/value

This paper presents results of morphing A320 aerofoil, with a chord of 70cm and subjected to two actuation kinds, original in the state of the art at M = 0.78 and Re = 4.5 million. These Hi-Fi simulations are rather rare; a majority of existing ones concern smaller dimensions. This study showed for the first time a modified buffet mode, displaying periodic high-lift “plateaus” interspersed by shorter lift-decrease intervals. Through trailing-edge vibration, this pattern is modified towards a sinusoidal-like buffet, with a considerable amplitude decrease. Lock-in of buffet frequency to the actuation is obtained, leading to this amplitude reduction and a drastic aerodynamic performance increase.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 138