Search results

1 – 10 of over 3000
Article
Publication date: 7 July 2020

Ahamed Saleel C., Asif Afzal, Irfan Anjum Badruddin, T.M. Yunus Khan, Sarfaraz Kamangar, Mostafa Abdelmohimen, Manzoore Elahi M. Soudagar and H. Fayaz

The characteristics of fluid motions in micro-channel are strong fluid-wall surface interactions, high surface to volume ratio, extremely low Reynolds number laminar flow, surface…

Abstract

Purpose

The characteristics of fluid motions in micro-channel are strong fluid-wall surface interactions, high surface to volume ratio, extremely low Reynolds number laminar flow, surface roughness and wall surface or zeta potential. Due to zeta potential, an electrical double layer (EDL) is formed in the vicinity of the wall surface, namely, the stern layer (layer of immobile ions) and diffuse layer (layer of mobile ions). Hence, its competent designs demand more efficient micro-scale mixing mechanisms. This paper aims to therefore carry out numerical investigations of electro osmotic flow and mixing in a constricted microchannel by modifying the existing immersed boundary method.

Design/methodology/approach

The numerical solution of electro-osmotic flow is obtained by linking Navier–Stokes equation with Poisson and Nernst–Planck equation for electric field and transportation of ion, respectively. Fluids with different concentrations enter the microchannel and its mixing along its way is simulated by solving the governing equation specified for the concentration field. Both the electro-osmotic effects and channel constriction constitute a hybrid mixing technique, a combination of passive and active methods. In microchannels, the chief factors affecting the mixing efficiency were studied efficiently from results obtained numerically.

Findings

The results indicate that the mixing efficiency is influenced with a change in zeta potential (ζ), number of triangular obstacles, EDL thickness (λ). Mixing efficiency decreases with an increment in external electric field strength (Ex), Peclet number (Pe) and Reynolds number (Re). Mixing efficiency is increased from 28.2 to 50.2% with an increase in the number of triangular obstacles from 1 to 5. As the value of Re and Pe is decreased, the overall percentage increase in the mixing efficiency is 56.4% for the case of a mixing micro-channel constricted with five triangular obstacles. It is also vivid that as the EDL overlaps in the micro-channel, the mixing efficiency is 52.7% for the given zeta potential, Re and Pe values. The findings of this study may be useful in biomedical, biotechnological, drug delivery applications, cooling of microchips and deoxyribonucleic acid hybridization.

Originality/value

The process of mixing in microchannels is widely studied due to its application in various microfluidic devices like micro electromechanical systems and lab-on-a-chip devices. Hence, its competent designs demand more efficient micro-scale mixing mechanisms. The present study carries out numerical investigations by modifying the existing immersed boundary method, on pressure-driven electro osmotic flow and mixing in a constricted microchannel using the varied number of triangular obstacles by using a modified immersed boundary method. In microchannels, the theory of EDL combined with pressure-driven flow elucidates the electro-osmotic flow.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 3 August 2012

E. Hachem, H. Digonnet, E. Massoni and T. Coupez

The purpose of this paper is to present an immersed volume method that accounts for solid conductive bodies (hat‐shaped disk) in calculation of time‐dependent, three‐dimensional…

Abstract

Purpose

The purpose of this paper is to present an immersed volume method that accounts for solid conductive bodies (hat‐shaped disk) in calculation of time‐dependent, three‐dimensional, conjugate heat transfer and fluid flow.

Design/methodology/approach

The incompressible Navier‐Stokes equations and the heat transfer equations are discretized using a stabilized finite element method. The interface of the immersed disk is defined and rendered by the zero isovalues of a level set function. This signed distance function allows turning different thermal properties of each component into homogeneous parameters and it is coupled to a direct anisotropic mesh adaptation process enhancing the interface representation. A monolithic approach is used to solve a single set of equations for both fluid and solid with different thermal properties.

Findings

In the proposed immersion technique, only a single grid for both air and solid is considered, thus, only one equation with different thermal properties is solved. The sharp discontinuity of the material properties was captured by an anisotropic refined solid‐fluid interface. The robustness of the method to compute the flow and heat transfer with large materials properties differences is demonstrated using stabilized finite element formulations. Results are assessed by comparing the predictions with the experimental data.

Originality/value

The proposed method demonstrates the capability of the model to simulate an unsteady three‐dimensional heat transfer flow of natural convection, conduction and radiation in a cubic enclosure with the presence of a conduction body. A previous knowledge of the heat transfer coefficients between the disk and the fluid is no longer required. The heat exchange at the interface is solved and dealt with naturally.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 22 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 January 2014

Oluyinka O. Bamiro and William W. Liou

The purpose of the current paper is to develop a numerical methodology, based on the immersed boundary-lattice Boltzmann computational framework, for the Neumann and Dirichlet…

Abstract

Purpose

The purpose of the current paper is to develop a numerical methodology, based on the immersed boundary-lattice Boltzmann computational framework, for the Neumann and Dirichlet boundary conditions in problems involving natural and forced convection heat transfer.

Design/methodology/approach

The direct forcing immersed boundary method is extended to study the heat transfer by incompressible flow within the thermal lattice Boltzmann method (LBM) computational framework. The direct forcing and heating immersed boundary-LBM introduces a heat source term to the thermal LBM to account for the heat transfer occurring at the immersed boundary. New numerical treatments for the Neumann type of boundary condition and for the calculation of the local Nusselt number are developed. The developed methodologies have been applied to flows around immersed bodies with natural and forced convection, including steady as well as unsteady flows.

Findings

Numerical experiments involving immersed bodies in natural and forced convection have been performed in order to assess the validity of the direct heating IB-LBM. The flow cases studied also include steady and transient flow phenomena. Flow velocity field and isotherms have been used for qualitative comparisons with existing, published results. The surface averaged Nusselt number, Strouhal number, and lift coefficient (for the unsteady flow cases) have been used for quantitative comparison with published results. The results show that there are satisfactory agreements, qualitatively and quantitatively, between the results obtained by using the present method and those previously published.

Originality/value

Limited application of immersed boundary to thermal flows within the LBM has been studied by researchers; the few past studies were limited to Dirichlet boundary conditions and/or using of feedback forcing and heating approaches. In the current paper, the direct forcing and heating approach was used which helps to eliminate the arbitrary constants used in the feedback approaches. The developed new numerical treatments for the Neumann type of boundary condition and for the calculation of the local Nusselt number eliminate the need to determine surface normal and temperature gradient in the normal direction for heat transfer calculation, which is particularly beneficial in cases with deforming or changing boundaries.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 24 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 4 September 2019

Mithun Kanchan and Ranjith Maniyeri

The purpose of this paper is to perform two-dimensional numerical simulation involving fluid-structure interaction of flexible filament. The filament is tethered to the bottom of…

Abstract

Purpose

The purpose of this paper is to perform two-dimensional numerical simulation involving fluid-structure interaction of flexible filament. The filament is tethered to the bottom of a rectangular channel with oscillating fluid flow inlet conditions at low Reynolds number. The simulations are performed using a temporal second-order finite volume-based immersed boundary method (IBM). Further, to understand the relation between different aspect ratios i.e. ratio of filament length to channel height (Len/H) and fixed channel geometry ratio, i.e. ratio of channel height to channel length (H/Lc) on mixing and pumping capabilities.

Design/methodology/approach

The discretization of governing continuity and Navier–Stokes equation is done by finite-volume method on a staggered Cartesian grid. SIMPLE algorithm is used to solve fluid velocity and pressure terms. Two cases of oscillatory flow conditions are used with the flexible filament tethered at the center of bottom channel wall. The first case is sinusoidal oscillatory flow with phase shift (SOFPS) and second case is sinusoidal oscillatory flow without phase shift (SOF). The simulation results are validated with filament dynamics studies of previous researchers. Further, parametric analysis is carried to study the effect of filament length (aspect ratio), filament bending rigidity and Reynolds number on the complex deformation and behavior of flexible filament interacting with nearby oscillating fluid motion.

Findings

It is found that selection of right filament length and bending rigidity is crucial for fluid mixing scenarios. The phase shift in fluid motion is also found to critically effect filament displacement dynamics, especially for rigid filaments. Aspect ratio, suitable for mixing applications is dependent on channel geometry ratio. Symmetric deformation is observed for filaments subjected to SOFPS condition irrespective of bending rigidity, whereas medium and low rigidity filaments placed in SOF condition show severe asymmetric behavior. Two key findings of this study are: symmetric filament conformity without appreciable bending produces sweeping motion in fluid flow, which is highly suited for mixing application; and asymmetric behavior shown by the filament depicts antiplectic metachronism commonly found in beating cilia. As a result, it is possible to pin point the type of fluid motion governing fluid mixing and fluid pumping. The developed computational model can, thus, successfully demonstrate filament-fluid interaction for a wide variety of similar problems.

Originality/value

The present study uses a temporal second-order finite volume-based IBM to examine flexible filament dynamics for various applications such as fluid mixing. Also, it highlights the relationship between channel geometry ratio and filament aspect ratio and its effect on filament sweep patterns. The study further reports the effect of filament displacement dynamics with or without phase shift for inlet oscillating fluid flow condition.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 12 June 2017

Bruce D. Jones and John R. Williams

Volume mapping of large spherical particles to a Cartesian grid with smaller grid elements is typically required in application of simple immersed boundary conditions in coupled…

Abstract

Purpose

Volume mapping of large spherical particles to a Cartesian grid with smaller grid elements is typically required in application of simple immersed boundary conditions in coupled engineering simulations. However, there exists no unique analytical solution to computation of the volume of intersection between spheres and cubes. The purpose of this paper is to determine a suitable solution to this problem depending on the required level of accuracy.

Design/methodology/approach

In this work, existing numerical techniques for computing intersection volume are reviewed and compared in terms of accuracy and performance. In addition to this, a more efficient linear relationship is proposed and included in this comparison.

Findings

The authors find in this work that a simple linear relationship is both acceptably accurate and more computationally efficient than the contemporary techniques.

Originality/value

This simple linear approach may be applied to accurately compute solutions to fluid-particle systems with very large numbers of particles.

Details

Engineering Computations, vol. 34 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 January 1990

C. Lea

The subject of the quantitative measurement of solderability of electronic components is introduced. The wetting balance in various configurations and modes of operation is being…

Abstract

The subject of the quantitative measurement of solderability of electronic components is introduced. The wetting balance in various configurations and modes of operation is being used as the focal point to establish a quantitative measurement capability for solderability of conventional leaded components, surface mounting components and printed circuit interconnections. The principles of operation of the wetting balance and the factors that influence the measurement are discussed. This paper is the first of a series that will cover the development of traceable reference standards for wetting balance calibration, the influence of instrumental design on the measurement, the standardisation of the measurement procedures, the choice and evaluation of a solderability index for the dynamic measurement, and the traceability of the measurement to international standards.

Details

Soldering & Surface Mount Technology, vol. 2 no. 1
Type: Research Article
ISSN: 0954-0911

Article
Publication date: 4 September 2018

Ehsan Adeeb, Basharat Ali Haider and Chang Hyun Sohn

The purpose of this study is to numerically investigate the influence of corner radius on the flow around two square cylinders in tandem arrangements at a Reynolds number of 100.

Abstract

Purpose

The purpose of this study is to numerically investigate the influence of corner radius on the flow around two square cylinders in tandem arrangements at a Reynolds number of 100.

Design/methodology/approach

Six models of square cylinders with corner radii R/D = 0.0, 0.1, 0.2, 0.3, 0.4 and 0.5 (where R denotes the corner radius and D denotes the characteristic dimension of the body) were studied using an immersed boundary-lattice Boltzmann method, and the results were compared with those obtained using a two-dimensional unsteady finite volume method. The cylinders were mounted in a tandem configuration (1.5 ≤ L/D ≤ 10 where L denotes the in-line separation between the cylinder centers). The simulated models were quantitatively compared to the aerodynamic force coefficients and Strouhal number. Furthermore, qualitative analysis is presented in the form of flow streamlines and vorticity contours.

Findings

The R/D and L/D values were varied to observe the variation in the flow characteristics in the gap and wake regions. The numerical results revealed two different regimes over the spacing range. The drag force on the downstream cylinder was negative for all corner radii values when the cylinders were placed at L/D = 3.0 (a single-body system). Subsequently, a sudden increase was observed in the aerodynamic forces (drag and lift) when L/D increased. A different gap value was identified in the transformation from a single-body to a two-body system for different corner radii. To verify the single-body system, a simulation was carried out with a single cylinder having a longitudinal geometric dimension equal to the tandem arrangement (L/D + D). Furthermore, in a single-body regime, the total drag of a tandem cylinder was less than that of a single cylinder, thus demonstrating the benefits of using tandem structures. A significant reduction in the aerodynamic forces and drag force was achieved by rounding the sharp corners and placing the cylinders in close proximity. An appropriate configuration of the tandem cylinders with a rounded corner of R/D = 0.4 and 0.5 at L/D = 3.0 and the range is enhanced to L/D = 4.0 for 0.0 ≤ R/D < 0.4 to achieve adequate drag reduction.

Originality/value

To the best of the author’s knowledge, there is a paucity of studies examining the effect of corner radius on bluff bodies arranged in a tandem configuration.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 January 1989

J. Barranger

The accuracy of severability measurements using the wetting balance depends on a number of parameters, some of which will be studied and discussed. Particular attention will be…

Abstract

The accuracy of severability measurements using the wetting balance depends on a number of parameters, some of which will be studied and discussed. Particular attention will be given to the influence of temperature, standard test pieces for measuring the wetting ability of fluxes, calibration of the measuring apparatus and the composition of the alloy used. Where necessary, tolerance limits will be given.

Details

Soldering & Surface Mount Technology, vol. 1 no. 1
Type: Research Article
ISSN: 0954-0911

Article
Publication date: 27 May 2014

D.C. Lo, Chih-Min Hsieh and D.L. Young

The main advantage of the proposed method is that the computations can be performed on a Cartesian grid with complex immersed boundaries (IBs). The purpose of this paper is to…

Abstract

Purpose

The main advantage of the proposed method is that the computations can be performed on a Cartesian grid with complex immersed boundaries (IBs). The purpose of this paper is to device a numerical scheme based on an embedding finite element method for the solution of two-dimensional (2D) Navier-Stokes equations.

Design/methodology/approach

Geometries featuring the stationary solid obstacles in the flow are embedded in the Cartesian grid with special discretizations near the embedded boundary to ensure the accuracy of the solution in the cut cells. To comprehend the complexities of the viscous flows with IBs, the paper adopts a compact interpolation scheme near the IBs that allows to satisfy the second-order accuracy and the conservation property of the solver. The interpolation scheme is designed by virtue of the shape function in the finite element scheme.

Findings

Three numerical examples are selected to demonstrate the accuracy and flexibility of the proposed methodology. Simulation of flow past a circular cylinder for a range of Re=20-200 shows excellent agreements with other results using different numerical schemes. Flows around a pair of tandem cylinders and several bodies are particularly investigated. The paper simulates the time-based variation of the flow phenomena for uniform flow past a pair of cylinders with various streamwise gaps between two cylinders. The results in terms of drag coefficient and Strouhal number show excellent agreements with the results available in the literature.

Originality/value

Details of the flow characteristics, such as velocity distribution, pressure and vorticity fields are presented. It is concluded the combined embedding boundary method and FE discretizations are robust and accurate for solving 2D fluid flows with complex IBs.

Details

Engineering Computations, vol. 31 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 26 August 2024

Elie Hachem, Abhijeet Vishwasrao, Maxime Renault, Jonathan Viquerat and P. Meliga

The premise of this research is that the coupling of reinforcement learning algorithms and computational dynamics can be used to design efficient control strategies and to improve…

Abstract

Purpose

The premise of this research is that the coupling of reinforcement learning algorithms and computational dynamics can be used to design efficient control strategies and to improve the cooling of hot components by quenching, a process that is classically carried out based on professional experience and trial-error methods. Feasibility and relevance are assessed on various 2-D numerical experiments involving boiling problems simulated by a phase change model. The purpose of this study is then to integrate reinforcement learning with boiling modeling involving phase change to optimize the cooling process during quenching.

Design/methodology/approach

The proposed approach couples two state-of-the-art in-house models: a single-step proximal policy optimization (PPO) deep reinforcement learning (DRL) algorithm (for data-driven selection of control parameters) and an in-house stabilized finite elements environment combining variational multi-scale (VMS) modeling of the governing equations, immerse volume method and multi-component anisotropic mesh adaptation (to compute the numerical reward used by the DRL agent to learn), that simulates boiling after a phase change model formulated after pseudo-compressible Navier–Stokes and heat equations.

Findings

Relevance of the proposed methodology is illustrated by controlling natural convection in a closed cavity with aspect ratio 4:1, for which DRL alleviates the flow-induced enhancement of heat transfer by approximately 20%. Regarding quenching applications, the DRL algorithm finds optimal insertion angles that adequately homogenize the temperature distribution in both simple and complex 2-D workpiece geometries, and improve over simpler trial-and-error strategies classically used in the quenching industry.

Originality/value

To the best of the authors’ knowledge, this constitutes the first attempt to achieve DRL-based control of complex heat and mass transfer processes involving boiling. The obtained results have important implications for the quenching cooling flows widely used to achieve the desired microstructure and material properties of steel, and for which differential cooling in various zones of the quenched component will yield irregular residual stresses that can affect the serviceability of critical machinery in sensitive industries.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of over 3000